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In Primerr1 I described ways to calculate the er-
ror and complexity of different regular tempera-
ment classes. It’s more difficult to find temperament
classes with a low error and complexity. Here I de-
scribe a method guaranteed to find all rank 2 classes
within a given error and complexity.

1"Prime Based Error and Complexity Measures", completed
February 7, 2008. Available at http://x31eq.com/
primerr.pdf. I’ll call this Primerr throughout for the sake
of brevity.

This is a refinement of the method I explained on
the Yahoo! Groups mailing list tuning-math on 20
and 31 January, 2006. Hopefully it’ll be clearer in
PDF because I can format the equations.

1 Problem Definition

The key to this method is that the square error of
a rank 2 temperament is defined to be a quadratic
function of the generator size, as in Equation 55 on
page 14 of Primerr.

E2 = σ2
M1

(g − gopt)2 + E2
opt (1)

where σ2
M1

is the variance of the generator mapping,
g is the generator size, gopt is the optimal tuning of
the generator, and Eopt is the optimal error given by

E2
opt =

σ2
M0
σ2

M1
− σ2

M0M1

M2
00 σ

2
M1

(2)

M00 is the number of periods to an octave and M1 is
the weighted generator mapping (including a zero).

The corresponding choice for complexity is Equa-
tion 69 on page 17 of Primerr.

k(M) = M00σM1 (3)

The goal is to find all rank 2 temperament classes
with E ≤ Emax and k ≤ kmax for given Emax and
kmax.
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2 Equal Temperament Constraints

2 Equal Temperament Constraints

Good equal temperaments are fairly easy to find. A
simple method is to look at each number of steps to
the octave, and take the nearest approximation to
each prime. In practice, this isn’t guaranteed to give
the best equal temperaments. However, the reliable
algorithm doesn’t take much longer. I won’t explain
it today.

Similarly, once you have an equal temperament,
finding the best rank 2 temperaments that belong to
it is fairly easy. You choose each number of steps to
the generator and find the best mapping.2 In prac-
tice, the algorithm for this is similar to the one for
finding equal temperaments, and I still won’t explain
it today.

In Equation 1, g can be any real number. For an
equal temperament, it’s always a rational number be-
cause it’s the ratio of the number of steps to a gener-
ator to the number of steps to an octave. So the error
equation becomes

E2 = σ2
M1

(n
d
− gopt

)2
+ E2

opt (4)

Let’s choose dmax as the highest number of notes
to the octave we want to deal with. Then, we know
that the equal temperaments we want to look at obey
the following theorem.

Theorem 1 All rank 2 temperament classes with com-
plexity k ≤ kmax and STD error3 E ≤ Emax have a
tuning in the equal temperaments with d notes to the
octave, d ≤ dmax, and STD error E such that

E2 ≤ k2
max

d2(dmax + 1)2
+ E2

max (5)

provided dmax is sufficiently large.

To prove Theorem 1, consider that the overall er-
ror of a temperament depends on how close g gets
to gopt. From number theory, we know that where

2Gene Ward Smith talked about this general method on
tuning-math long before I implemented it.

3“Optimal Tenney-weighted STD Error” is a real mouthful. As
I want to talk about it a lot today I’m shortening it to “STD
error”.

the period equals the octave, an n and d must exist
where 0 < d ≤ dmax and4∣∣∣gopt −

n

d

∣∣∣ ≤ 1
d(dmax + 1)

(6)

For a general rank 2 temperament, that describes the
ratio of the number of steps to a generator to the
number of steps to the period. To make d the num-
ber of steps to an octave, we need to adjust by the
number of periods to the octave M00. To do this,
multiply gopt by M00 and divide d and dmax by M00.∣∣∣∣M00gopt −

nM00

d

∣∣∣∣ ≤ M00

d
(

dmax
M00

+ 1
) (7)

Because M00 is defined to be positive, that becomes

M00

∣∣∣gopt −
n

d

∣∣∣ ≤ M2
00

d(dmax +M00)
(8)

and because M00 is never zero,∣∣∣gopt −
n

d

∣∣∣ ≤ M00

d(dmax +M00)
(9)

This requires dmax to be at least the largest number
of periods to the octave we might be interested in.

It follows that(
gopt −

n

d

)2
≤ M2

00

d2(dmax +M00)2
(10)

Substituting into Equation 4 and square rooting
everything,√

E2 − E2
opt ≤

M00σM1

d(dmax +M00)
(11)

The numerator is the complexity as defined in Equa-
tion 3. So,√

E2 − E2
opt ≤

k(M)
d(dmax +M00)

(12)

For the rank 2 temperaments we’re looking for,
k(M) ≤ kmax. That means replacing k(M) with kmax

can only make the right hand side larger, and so√
E2 − E2

opt ≤
kmax

d(dmax +M00)
(13)

4See Yu. I. Manin & A. A. Panchishkin, Introduction to Mod-
ern Number Theory, Second Edition. The field is called “Dio-
phantine approximations”. The reference doesn’t explicitly
exclude the case where n = d = 0 but as n

d
should be in its

lowest terms I hope division by zero always fails that test.
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3 The Largest Equal Temperament

Rearrange that a bit:

E2 ≤
[

kmax

d(dmax +M00)

]2

+ E2
opt (14)

Here, Eopt is the smallest possible error for the
rank 2 temperament we’re looking at. If that’s one
of the temperaments we’re looking for, Eopt ≤ Emax.
That means replacing Eopt with Emax can only make
the right hand side larger, and

E2 ≤ k2
max

d2(dmax +M00)2
+ E2

max (15)

This is the function we’re looking for but with the
extra factor of M00, the number of periods to the
octave. To simplify it, note that there’s always at
least one period to the octave and replacingM00 with
one makes the denominator smaller and so the right
hand side larger. That leaves us with Theorem 1.

3 The Largest Equal Temperament

So far, there’s an arbitrary term dmax equal to the
largest number of steps to the octave in any equal
temperament we want to look at. The only constraint
is that it has to be at least as large as the largest
number of periods to the octave we expect.

Common sense tells us that you need at least two
notes to a period for a rank 2 temperament to make
any sense. That means the highest number of peri-
ods per octave is half the largest number of notes you
might want to use. As long as dmax is at least as large
is the size of scale you’re looking for you shouldn’t
have to worry about missing temperaments with a
high M00. However, I’m talking about proofs today,
not common sense, so I’ll give you a quantitative con-
straint on dmax.

Theorem 2 When searching for temperament classes
with np prime intervals and buoyancies of b, Theorem
1 holds for

dmax ≥ floor

[
kmaxnp√
np − 1

max(b)
b0

]
(16)

The proof is in Appendix B.

That gives us a lower limit for something we didn’t
expect to get too low anyway. To make the search as
efficient as possible it’s also nice to know the optimal
value for dmax. Here’s a simple rule to find it:

Rule of Thumb 1 It’s easiest to find equal tempera-
ments according to Theorem 1 when

dmax = floor

[√
kmax

Emax

]
(17)

To demonstrate its validity, turn Theorem 1 into a
badness inequality by multiplying both sides by the
square of the number of steps to the octave.

B2 ≤ k2
max

(dmax + 1)2
+ d2E2

max (18)

For a given badness of this form, it’s about as diffi-
cult to find an equal temperament below the thresh-
old regardless of the number of steps to the octave.
The highest value of the badness is where d = dmax.
That is,

Bmax =
k2

max

(dmax + 1)2
+ d2

maxE
2
max (19)

The dmax + 1 term is fiddly, so to get a rough idea of
the best value replace it with dmax.

Bmax '
k2

max

d2
max

+ d2
maxE

2
max (20)

The search will be most efficient when this takes its
lowest possible value. To find that, differentiate with
respect to dmax and set the result to zero.5

d(Bmax)
d(dmax)

' 0

−2
k2

max

d3
max

+ 2dmaxE
2
max ' 0

d4
maxE

2
max − k2

max ' 0

dmax '
√
kmax

Emax
(21)

5 Note the similarity with Equation 89 on page 19 of Primerr.
Now you know what it means; it indicates the region where
you’re most likely to find equal tunings of the temperament
class with low badness.
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4 Examples

As this is a compromise between dmax and dmax + 1,
it’s safe to round it down. Hence Rule of Thumb 1.
It’s is a good bet for dmax unless it violates Theorem
2. So the best thing is to take the larger of the two.

Rule of Thumb 2 When applying Theorem 1, a good
and safe value for dmax is

dmax = floor

[
max

(√
kmax

Emax
,
kmaxnp√
np − 1

max(b)
b0

)]
(22)

Given this rule, you could re-apply Theorem 1 for
each equal temperament you find, setting dmax to
one less than the number of notes to the octave in
the equal temperament you found first. You can then
use the formulae in Primerr that describe rank 2 tem-
perament classes in terms of a pair of equal temper-
maments. This works, but only if Theorem 2 still
applies. In general, you can’t be sure if the equal
temperaments that come out the first time will be
big enough so you still need to implement the code
to find the rank 2 temperament classes from a single
equal temperament.

4 Examples

4.1 Miracle

Miracle temperament caused a stir when it was re-
discovered back in 2001. It looked like the op-
timal rank 2 temperament class for an important
range of error and complexity. But could we be sure
we weren’t missing something better? Now we can
prove we weren’t.

From Primerr, notice that miracle has an 11-limit
STD error of 0.484 cents per octave (cpo) and an STD
complexity of 2.788. The optimal value for dmax is

dmax = floor

[√
2.788× 1200

0.484

]
= 83 (23)

The equal temperament search gives one result:

〈72, 114, 167, 202, 249|

To find another equal temperament to pair with this,
repeat the search with dmax = 71. That also gives a

single result:

〈31, 49, 72, 87, 107|

That means any linear temperament that does at
least as well as miracle must look exactly like mir-
acle. As the largest octave division compatible with
the complexity is 24, this is generally true for all rank
2 temperaments.

As it happens, running the rank 2 search returns
no results. That’s because the figures for error
and complexity both happen to be rounded down.
Change the error to 2.7881 and the complexity to
0.4841 cents per octave and the same equal temper-
aments are produced, along with a rank 2 mapping
of

|〈1, 1, 3, 3, 2| , 〈0, 6,−7,−2, 15|〉

This matches the 11-limit mapping for miracle in
Primerr.

That shows miracle’s better at being miracle than
any other temperament is. But maybe there’s a tem-
perament that’s a bit simpler but has almost the same
error. Making the complexity limit 2.788 and the er-
ror limit 1.0 cpo gives a single result:

|〈1,−1, 0, 1,−3| , 〈0, 10, 9, 7, 25|〉

This is called myna in Primerr, where it’s given an
STD complexity of 2.609 and an STD error of 0.852
cpo. Hence a search with complexity of 2.7881 and
error of 0.851 cpo will still only return miracle. Re-
quiring the error to almost double means miracle re-
ally does stand out.

Well, how about more complex temperaments
with a smaller error than miracle? The only one
listed in Primerr is wizard with an STD error of 0.448
cpo and an STD complexity of 4.063. The mapping
is

|〈2, 1, 5, 2, 8| , 〈0, 6,−1, 10,−3|〉

A search with kmax = 4.064 and Emax = 0.484 cpo
gives only wizard. A search with kmax = 4.063 and
Emax = 0.4841 cpo gives only miracle. Hence wizard
is the temperament class with the next lowest com-
plexity to miracle and a smaller optimal error. That
means a rank 2 temperament has to get a fair bit
more complex than miracle to have a simpler error.
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4 Examples

That covers temperaments which are either sim-
pler or more accurate than miracle. How about
those which are close to miracle, but not quite as
good? Doing a broad search with kmax = 4.063 and
Emax = 0.851 cpo gives seven results. Narrowing
it down to kmax = 3.75 and Emax = 0.65 cpo and
only miracle comes out. (I chose these values be-
cause the optimal dmax is 83, as for the narrowest
miracle search, so the trade-off between complexity
and error is about the same.) Miracle has a scalar
badness6 of 2.788 × 0.484 = 1.3494. There are no
temperaments nearby with a badness of less than
3.75∗0.65 = 2.4735 so miracle is nearly twice as good
as anything similar. Truly outstanding!

Increase the complexity and error limits to 3.78
and 0.68 cpo and two new temperament classes pop
out. Their mappings are

|〈1, 1,−1, 3, 6| , 〈0, 3, 17,−1,−13|〉

|〈1,−5, 0,−3,−7| , 〈0, 17, 6, 15, 27|〉

The first is in Primerr as rodan. It has an STD com-
plexity of 3.640 and an STD error of 0.671 cpo. The
other can be called an extension of semisept7. Its
STD complexity is 3.773 and its STD error is 0.614
cpo. Its generator is 12 steps from a 31 note scale. In
so far as STD error and complexity mean anything,
these are miracle’s nearest neighbors.

4.2 Ennealimmal

Standard deviations involve subtracting the squares
of numbers that are very close together. Because of
this they can suffer from rounding errors. Ennealim-
mal8 temperament can get very close to 7-limit just
intonation, so let’s check that it comes up when it’s
supposed to. The canonical mapping is

|〈9, 15, 22, 26| , 〈0,−2,−3,−2|〉

Primerr gives it an STD error of 0.030 cpo and an
STD error of 4.724. Sure enough, it comes up in a

6Complexity times optimal error with error in cpo, whatever
units that works out as.

7Name from Gene Ward Smith, collected by Herman Miller,
tuning-math March 3, 2008

8Discovered and named by Gene Ward Smith

search with kmax = 4.724 and Emax = 0.03 cpo, but
not when Emax is reduced to 0.029 cpo.

So, is ennealimmal all it’s cracked up to be? Isn’t
there something simpler that does nearly as well?
You can keep kmax at 4.724 and increase Emax to 0.22
cpo and it’s still the only result you get. That makes
the error seven times as large! So yes, ennealimmal
is very special indeed.

4.3 Mystery

Mystery is the name I give to a temperament class
that sits at the top of some of my searches for the
odd limits of 13 and 15. It divides the octave into
29 equal parts and the whole 15-limit is contained in
the 58 note MOS. The mapping is

|〈29, 46, 68, 82, 101, 108| , 〈0, 0,−1,−1,−1,−1|〉

It’s STD error is 0.513 cpo and its STD complexity is
4.837.

Sure enough, mystery comes up in a search with
Emax = 0.513 cpo and kmax = 4.837. However, so
does a kind of miracle:

|〈1, 1, 3, 3, 2, 7| , 〈0, 6,−7,−2, 15,−34|〉

It has an STD complexity of 4.534 and an STD error
of 0.478 cpo. So, mystery isn’t a stand-out with STD
measures.

Generally, mystery comes up better with odd-limit
minimax measures than mean-based measures. Its
virtue is that none of the 15-limit intervals require
more than one generator step, and so they all fit
into that 58 note MOS with plenty of modulation by
fifths. However, all the intervals that require that
generator step have a relatively high complexity (not
equally high with weighting). Counting intervals like
25 : 16 that lie outside the 58 note MOS isn’t really
to the point, but this is what the STD complexity im-
plies. In these terms mystery is still good but not the
best.

Widen the parameters to kmax = 4.9 and Emax =
0.52 cpo and another temperament class comes out:

|〈2, 4, 7, 7, 9, 11| , 〈0,−6,−17,−10,−15,−26|〉
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5 General Applicability

It’s related to miracle and you can call it harry9. The
generator is 4 steps of a 58 note scale (with a 29
note period). Its STD complexity is 4.889 and its STD
error is 0.354 cpo.

4.4 Over Broad Searches

Say that you’re looking for temperaments in the
vicinity of miracle. So you decide to do a search with
kmax = 4 and Emax = 0.5 cpo. However, you forget
the cpo bit and instead set a dimensionless (octaves
per octave) Emax = 0.5. This is a stupidly high error
and there are loads and loads of rank 2 classes that
can beat it with a complexity of within 4.

The first eleven equal temperaments that come out
all have a mapping that starts 〈1, 0,−1, . . .|. So what
sense does this make? One note equal temperament?
Sometimes a valid search may require such mon-
strosities. If you get too many of them it’s a sign
that there are so many rank 2 temperaments of the
kind you asked for that you’ll never be able to look
at them all, so you should refine your search.

I implemented these searches in Python. With
some older versions this kind of thing would hang
the interpreter in a way that made it difficult to in-
terrupt. Fortunately that doesn’t seem to be the case
any more. And, using these new fangled generators,
it’s possible to see the equal temperaments that come
out without waiting for the full set. I didn’t wait long
enough to get a single rank 2 result.

Generally speaking, narrow searches are fast. All
the examples in this section take up less than half a
second on my bottom of the range laptop. So the
execution time isn’t really a problem. But it may be
come one if you want to do a general search and
take the best results. This method isn’t really suited
for that.

5 General Applicability

Theorem 1 is fine if you want to search for tempera-
ment classes according to STD complexity and error.
But what about the more likely case that you’re in-
terested in TOP-RMS error and scalar complexities

9Name from Gene Ward Smith via Herman Miller (Op. Cit.)

(Primerr Sections 2 and 5.5)?

E2
RMS =

σ2
M0
σ2

M1
− σ2

M0M1〈
M2

0

〉 〈
M2

1

〉
− 〈M0M1〉2

(24)

k2
scalar = 〈M2

0 〉〈M2
1 〉 − 〈M0M1〉2 (25)

To find how closely they match, consider Equation
26 on p. 8 of Primerr.

ERMS =

√
〈w2〉 − 〈w〉2

〈w2〉
(26)

The numerator here is the STD error. The denomi-
nator is the RMS of the weighted primes, which can
also be written in terms of weighted errors.√

〈w2〉 =
√

1 + 2 〈e〉+ 〈e2〉 (27)

Hence Equation 26 is the same as

ERMS =
ESTD√

1 + 2 〈e〉+ 〈e2〉
(28)

where ERMS is the TOP-RMS error, ESTD is the STD
error (optimal and Tenney weighted) and plain e is
the list of errors for some stretched TOP-RMS tuning.
Alternatively,

ESTD

ERMS
=
√

1 + 2 〈e〉+ 〈e〉2 (29)

Where the errors are small, a binomial expansion of
that gives

ESTD

ERMS
= 1+〈e〉+1

2
〈
e2
〉
+O

(
〈e〉2

)
+O

(〈
e2
〉2) (30)

Whether the mean or RMS error dominates, the STD
error is the first order approximation to the TOP-RMS
error. That leads to a general rule:

Rule of Thumb 3 When searching for rank 2 temper-
ament classes with TOP-RMS error less than ERMS and
half-range complexity less than kscalar, Theorem 1 ap-
plies if you set

Emax = (1 + λERMS)ERMS (31)

kmax = (1 + λERMS)kscalar (32)

where λ is a confidence factor of around 1. The higher
λ, the less likely you are to miss something.
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A Python Code

The logic is that you don’t know the sign of 〈e〉 but
you know it’s about the magnitude of the optimal
error, and so the two ways of measuring the error
must agree to a factor proportional to the optimal
error.

As I said in Section 5.5 of Primerr, the STD er-
ror multiplied by the STD complexity is the same as
the TOP-RMS error multiplied by the scalar complex-
ity. So, the two kinds of complexity will approximate
each other to the same degree as the two kinds of
errors.

Another popular error measure is the TOP-max,
which is the smallest value of the magnitude of the
worst Tenney-weighted error of the prime intervals
(or some other set of intervals). A natural coun-
terpart to such an error is the half-range complexity
(Primerr Equation 72, p. 17).

k(M) = M00
max(M1)−min(M1)

2
(33)

For these, the rule is very simple.

Rule of Thumb 4 To find rank 2 temperament classes
with TOP-max error below Emax and half-range com-
plexity below kmax, apply Theorem 1 directly. The
bound on the error of equal temperaments still refers
to the STD error.

STD complexity is the standard deviation of the
same thing that the half-range complexity is half the
range of. The STD is the RMS relative to the mean,
and the half-range is the worst case relative to the
middle of the range. Because averages are always
smaller than worst cases, the STD complexity can’t
be bigger than the half-range complexity. So Theo-
rem 1 still applies if you substitute one complexity
for another.

Showing that the TOP-max error is always greater
than the STD error is more difficult. The TOP-max
error is the worst case for a particular scale stretch.
Hence this is only a rule of thumb and not a theorem.

6 Conclusion

Searches according to Theorem 1 and Rule of Thumb
2 are a safe and efficient way to return all rank 2 tem-
perament classes within given error and complexity

bounds, provided the bounds are strict enough that
only a few temperament classes qualify.

This is most valuable when you already know of
some interesting temperament classes, and want to
find out if other classes have similar properties. If
you don’t know of any temperament classes that
might be returned, it’s harder to make sure the cri-
teria are generous enough to return something but
strict enough to return within a reasonable amount
of time.

The proof involves optimal Tenney-weighted STD
errors and the corresonding complexities, but can be
extended to other cases.

A Python Code

To clarify how the algorithm for finding rank 2 tem-
peraments is supposed to work, here’s some source
code in the Python programming language.10 As
it uses the set type, it requires at least version
2.4. The full code is in the file complete.py in
the bundle that can be downloaded from http://
x31eq.com/temper/regular.zip and also requires
regular.py from the same bundle.

First, use getEqualTemperaments to get the map-
pings for some equal temperaments that represent
all rank 2 temperaments with a complexity less than
kmax and an error less than Emax. It follows The-
orem 1 and supplies a default value for the largest
equal temperament according to Rule of Thumb
2. It’s nice and small because it uses the function
varLimitedMappings to do the real work. That’s
too complicated to show here so you’ll have to down-
load the full source code to see it.

Once you have your equal temperaments, you use
getLinearTemperaments find the rank 2 tempera-
ments. This depends on the function allMappings
and the two finder classes to do the work. They’re
so complicated I left them in regular.py. There’s
also a function invariant that returns something to
uniquely identify the temperament class. It isn’t that
complicated, but not that interesting either, so I left
it out.

The function at the top, survey, finds your rank

10See http://www.python.org
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B Proof of Theorem 2

Listing 1: Excerpts from complete.py

def survey (primes , kmax , Emax ) :
ets = getEqualTemperaments (primes , kmax , Emax )
return list (getLinearTemperaments (primes , ets , kmax , Emax ))

def getEqualTemperaments (primes , kmax , Emax , dmax=None ) :
i f dmax i s None :

dmax = int (math . sqrt (kmax/Emax ))
# Check we g e t a l l p e r i od d i v i s i o n s
dmax = max (dmax , largestOctaveDivision (primes , kmax ))
k2od2 = (kmax /(dmax+1))**2
for nNotes in xrange (1 , dmax+1):

cutoff = k2od2/nNotes**2 + Emax**2
for mapping in varLimitedMappings (nNotes , cutoff , primes ) :

y ie ld mapping

def getLinearTemperaments (primes , ets , kmax , Emax ) :
oldInvariants = set ()
for et in ets :

mappings = allMappings (primes , et , kmax , Emax ,
STDComplexityFinder , VarianceErrorFinder )

for gen , permap , genmap in mappings :
key = invariant (permap , genmap )
i f key not in oldInvariants :

oldInvariants . add (key )
y ie ld permap , genmap

def largestOctaveDivision (primes , kmax ) :
np = len (primes )
return int (kmax*np*max (primes ) / primes [0]/math . sqrt (np−1))

2 temperaments given only the prime-limit and the
complexity and error limits. It’s a simpler interface
but you never know what equal temperaments it
used. It also returns a list so it’s more convenient
but it’ll hang if your requirements are too lax.

Note that errors are measured in dimensionless
units, but in the text I talk about cpo. Divide cpo
by 1200 to make them dimensionless.

There’s also largestOctaveDivision to imple-
ment Theorem 2.

B Proof of Theorem 2

For a given M00 the smallest equal tuning will have
M00 notes to the octave and a generator of zero steps.
That is d = M00. For this equal temperament to be

covered by the search, dmax ≥ M00. The complexity
constraint tells us (via Equation 3)

M00σM1 ≤ kmax (34)

Rearranging that gives a constraint on M00 and
therefore dmax

dmax ≥
kmax

σM1

(35)

If dmax satisfies this inequality, we know it’s big
enough. Maybe a smaller dmax would still work but
let’s be generous.

So, the smallest safe value of dmax corresponds to
the smallest possible value of σM1 . This is the stan-
dard deviation of the weighted generator mapping.
It measures how far elements of the weighted map-
ping get from the mean. If all elements are zero it’s
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C Glossary

invalid because it doesn’t refer to a true rank 2 tem-
perament. The smallest finite value is when all ele-
ments are zero except the one with the least weight.
In terms of buoyancy,

b0
max(b)

(36)

where b is the list of buoyancies and b0 is the
buoyancy of the equivalence interval11. For Tenney
weighting of prime limits that’s the largest prime in
the limit.

max(b) = log2[p(np)] (37)

where np is the number of primes, p(i) is the ith
prime number, and buoyancy is measured in octaves.
The standard deviation is

σM1 =
√〈

M2
1

〉
− 〈M1〉2 (38)

where the angled brackets represent means. In this
case they’re very simple:

〈M1〉 =
b0

max(b)
(39)

〈
M2

1

〉
=

b20
max(b2)

(40)

The standard deviation follows as

σM1 =

√
b20

np max(b2)
−
(

b0
np max(b)

)2

=

√
b20

np max(b2)
− b20
n2

p max(b2)

=

√
np − 1
np

b0
max(b)

(41)

Substitute that into Equation 35 to get

dmax ≥
kmaxnp√
np − 1

max(b)
b0

(42)

We can safely round this down because both dmax

and M00 are constrained to be integers, to give The-
orem 2.
11This is a normalization factor to ensure the choice of units can-

cels out. Depending on how you define the weighted map-
ping for inharmonic timbres, you might not need it.

C Glossary

Canonical mapping A standard form of the map-
ping for a rank 2 temperament. The first ele-
ment describes the primes according to the pe-
riod, and the second describes them according
to the generator.

Equal temperamant A regular temperament that
divides the octave into a number of equal parts
and has no notes outside this division.

Generator An interval distinct from the period
used to define a rank 2 temperament.

Period An interval that equally divides the octave.

RMS The root mean squared.

Rank 2 temperament A regular temperament
with two distinct step sizes.

Regular temperament A tuning approximating
just intonation where each just interval maps to
a single tempered interval.

Regular temperament class The set of all regu-
lar temperaments that share the same mapping
from just intonation.

STD The standard deviation. That is, the RMS rela-
tive to the mean.

STD complexity The standard deviation of the
Tenney weighted generator mapping, multiplied
by the number of periods to an octave.

STD error The standard deviation of the Tenney
weighted errors of a regular temperament.
When applied to a temperament class, use the
optimal value, but keep octaves pure.

Tenney weighting Weighting intervals according
to their size, with larger intervals getting the less
weight.

Weighted mapping The numbers indicating how
many steps in a temperament there are to each
prime interval, weighted according to complex-
ity. It should be normalized so the octave has a
weight of 1.
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