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In Primerr1 I described ways to calculate the error and complexity of different
regular temperament classes. It’s more difficult to find temperament classes with
a low error and complexity. Here I describe a method guaranteed to find all rank
2 classes within a given error and complexity.

This is a refinement of the method I explained on the Yahoo! Groups mailing
list tuning-math on 20 and 31 January, 2006. Hopefully it’ll be clearer in PDF
because I can format the equations.

1"Prime Based Error and Complexity Measures", completed February 7, 2008. Available at http://x31eq.
com/primerr.pdf. I’ll call this Primerr throughout for the sake of brevity.
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1 Problem Definition

1 Problem Definition

The key to this method is that the square error of a rank 2 temperament is defined
to be a quadratic function of the generator size, as in Equation 55 on page 14 of
Primerr.

E2 = σ2
M1

(g − gopt)
2 + E2

opt (1)

where σ2
M1

is the variance of the generator mapping, g is the generator size, gopt

is the optimal tuning of the generator, and Eopt is the optimal error given by

E2
opt =

σ2
M0
σ2

M1
− σ2

M0M1

M2
00 σ

2
M1

(2)

M00 is the number of periods to an octave and M1 is the weighted generator
mapping (including a zero).

The corresponding choice for complexity is Equation 69 on page 17 of Primerr.

k(M) = M00σM1 (3)

The goal is to find all rank 2 temperament classes with E ≤ Emax and k ≤ kmax

for given Emax and kmax.

2 Equal Temperament Constraints

Good equal temperaments are fairly easy to find. A simple method is to look at
each number of steps to the octave, and take the nearest approximation to each
prime. In practice, this isn’t guaranteed to give the best equal temperaments.
However, the reliable algorithm doesn’t take much longer. I won’t explain it today.

Similarly, once you have an equal temperament, finding the best rank 2 tem-
peraments that belong to it is fairly easy. You choose each number of steps to the
generator and find the best mapping.2 In practice, the algorithm for this is similar
to the one for finding equal temperaments, and I still won’t explain it today.

In Equation 1, g can be any real number. For an equal temperament, it’s always
a rational number because it’s the ratio of the number of steps to a generator to
the number of steps to an octave. So the error equation becomes

E2 = σ2
M1

(n
d
− gopt

)2

+ E2
opt (4)

Let’s choose dmax as the highest number of notes to the octave we want to deal
with. Then, we know that the equal temperaments we want to look at obey the
following theorem.

Theorem 1 All rank 2 temperament classes with complexity k ≤ kmax and STD
error3 E ≤ Emax have a tuning in the equal temperaments with d notes to the octave,
d ≤ dmax, and STD error E such that

E2 ≤ k2
max

d2(dmax + 1)2
+ E2

max (5)

provided dmax is sufficiently large.
2Gene Ward Smith talked about this general method on tuning-math long before I implemented it.
3“Optimal Tenney-weighted STD Error” is a real mouthful. As I want to talk about it a lot today I’m shortening

it to “STD error”.

2



2 Equal Temperament Constraints

To prove Theorem 1, consider that the overall error of a temperament depends
on how close g gets to gopt. From number theory, we know that where the period
equals the octave, an n and d must exist where 0 < d ≤ dmax and4∣∣∣gopt −

n

d

∣∣∣ ≤ 1

d(dmax + 1)
(6)

For a general rank 2 temperament, that describes the ratio of the number of steps
to a generator to the number of steps to the period. To make d the number of
steps to an octave, we need to adjust by the number of periods to the octave M00.
To do this, multiply gopt by M00 and divide d and dmax by M00.∣∣∣∣M00gopt −

nM00

d

∣∣∣∣ ≤ M00

d
(

dmax

M00
+ 1
) (7)

Because M00 is defined to be positive, that becomes

M00

∣∣∣gopt −
n

d

∣∣∣ ≤ M2
00

d(dmax +M00)
(8)

and because M00 is never zero,∣∣∣gopt −
n

d

∣∣∣ ≤ M00

d(dmax +M00)
(9)

This requires dmax to be at least the largest number of periods to the octave we
might be interested in.

It follows that (
gopt −

n

d

)2

≤ M2
00

d2(dmax +M00)2
(10)

Substituting into Equation 4 and square rooting everything,√
E2 − E2

opt ≤
M00σM1

d(dmax +M00)
(11)

The numerator is the complexity as defined in Equation 3. So,√
E2 − E2

opt ≤
k(M)

d(dmax +M00)
(12)

For the rank 2 temperaments we’re looking for, k(M) ≤ kmax. That means
replacing k(M) with kmax can only make the right hand side larger, and so√

E2 − E2
opt ≤

kmax

d(dmax +M00)
(13)

Rearrange that a bit:

E2 ≤
[

kmax

d(dmax +M00)

]2

+ E2
opt (14)

4See Yu. I. Manin & A. A. Panchishkin, Introduction to Modern Number Theory, Second Edition. The field is
called “Diophantine approximations”. The reference doesn’t explicitly exclude the case where n = d = 0 but
as n

d should be in its lowest terms I hope division by zero always fails that test.
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3 The Largest Equal Temperament

Here, Eopt is the smallest possible error for the rank 2 temperament we’re look-
ing at. If that’s one of the temperaments we’re looking for, Eopt ≤ Emax. That
means replacing Eopt with Emax can only make the right hand side larger, and

E2 ≤ k2
max

d2(dmax +M00)2
+ E2

max (15)

This is the function we’re looking for but with the extra factor of M00, the number
of periods to the octave. To simplify it, note that there’s always at least one period
to the octave and replacing M00 with one makes the denominator smaller and so
the right hand side larger. That leaves us with Theorem 1.

3 The Largest Equal Temperament

So far, there’s an arbitrary term dmax equal to the largest number of steps to the
octave in any equal temperament we want to look at. The only constraint is that
it has to be at least as large as the largest number of periods to the octave we
expect.

Common sense tells us that you need at least two notes to a period for a rank
2 temperament to make any sense. That means the highest number of periods
per octave is half the largest number of notes you might want to use. As long as
dmax is at least as large is the size of scale you’re looking for you shouldn’t have to
worry about missing temperaments with a high M00. However, I’m talking about
proofs today, not common sense, so I’ll give you a quantitative constraint on dmax.

Theorem 2 When searching for temperament classes with np prime intervals and
buoyancies of b, Theorem 1 holds for

dmax ≥ floor

[
kmaxnp√
np − 1

max(b)

b0

]
(16)

The proof is in Appendix B.
That gives us a lower limit for something we didn’t expect to get too low anyway.

To make the search as efficient as possible it’s also nice to know the optimal value
for dmax. Here’s a simple rule to find it:

Rule of Thumb 1 It’s easiest to find equal temperaments according to Theorem 1
when

dmax = floor

[√
kmax

Emax

]
(17)

To demonstrate its validity, turn Theorem 1 into a badness inequality by multi-
plying both sides by the square of the number of steps to the octave.

B2 ≤ k2
max

(dmax + 1)2
+ d2E2

max (18)

For a given badness of this form, it’s about as difficult to find an equal temper-
ament below the threshold regardless of the number of steps to the octave. The
highest value of the badness is where d = dmax. That is,

Bmax =
k2

max

(dmax + 1)2
+ d2

maxE
2
max (19)
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4 Examples

The dmax + 1 term is fiddly, so to get a rough idea of the best value replace it with
dmax.

Bmax '
k2

max

d2
max

+ d2
maxE

2
max (20)

The search will be most efficient when this takes its lowest possible value. To find
that, differentiate with respect to dmax and set the result to zero.5

d(Bmax)

d(dmax)
' 0

−2
k2

max

d3
max

+ 2dmaxE
2
max ' 0

d4
maxE

2
max − k2

max ' 0

dmax '
√
kmax

Emax

(21)

As this is a compromise between dmax and dmax + 1, it’s safe to round it down.
Hence Rule of Thumb 1. It’s is a good bet for dmax unless it violates Theorem 2.
So the best thing is to take the larger of the two.

Rule of Thumb 2 When applying Theorem 1, a good and safe value for dmax is

dmax = floor

[
max

(√
kmax

Emax

,
kmaxnp√
np − 1

max(b)

b0

)]
(22)

Given this rule, you could re-apply Theorem 1 for each equal temperament
you find, setting dmax to one less than the number of notes to the octave in the
equal temperament you found first. You can then use the formulae in Primerr that
describe rank 2 temperament classes in terms of a pair of equal tempermaments.
This works, but only if Theorem 2 still applies. In general, you can’t be sure if the
equal temperaments that come out the first time will be big enough so you still
need to implement the code to find the rank 2 temperament classes from a single
equal temperament.

4 Examples

4.1 Miracle

Miracle temperament caused a stir when it was re-discovered back in 2001. It
looked like the optimal rank 2 temperament class for an important range of error
and complexity. But could we be sure we weren’t missing something better? Now
we can prove we weren’t.

From Primerr, notice that miracle has an 11-limit STD error of 0.484 cents per
octave (cpo) and an STD complexity of 2.788. The optimal value for dmax is

dmax = floor

[√
2.788× 1200

0.484

]
= 83 (23)

5 Note the similarity with Equation 89 on page 19 of Primerr. Now you know what it means; it indicates the
region where you’re most likely to find equal tunings of the temperament class with low badness.
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4 Examples

The equal temperament search gives one result:

〈72, 114, 167, 202, 249|

To find another equal temperament to pair with this, repeat the search with dmax =

71. That also gives a single result:

〈31, 49, 72, 87, 107|

That means any linear temperament that does at least as well as miracle must look
exactly like miracle. As the largest octave division compatible with the complexity
is 24, this is generally true for all rank 2 temperaments.

As it happens, running the rank 2 search returns no results. That’s because the
figures for error and complexity both happen to be rounded down. Change the
error to 2.7881 and the complexity to 0.4841 cents per octave and the same equal
temperaments are produced, along with a rank 2 mapping of

|〈1, 1, 3, 3, 2| , 〈0, 6,−7,−2, 15|〉

This matches the 11-limit mapping for miracle in Primerr.
That shows miracle’s better at being miracle than any other temperament is.

But maybe there’s a temperament that’s a bit simpler but has almost the same
error. Making the complexity limit 2.788 and the error limit 1.0 cpo gives a single
result:

|〈1,−1, 0, 1,−3| , 〈0, 10, 9, 7, 25|〉

This is called myna in Primerr, where it’s given an STD complexity of 2.609 and
an STD error of 0.852 cpo. Hence a search with complexity of 2.7881 and error
of 0.851 cpo will still only return miracle. Requiring the error to almost double
means miracle really does stand out.

Well, how about more complex temperaments with a smaller error than mira-
cle? The only one listed in Primerr is wizard with an STD error of 0.448 cpo and
an STD complexity of 4.063. The mapping is

|〈2, 1, 5, 2, 8| , 〈0, 6,−1, 10,−3|〉

A search with kmax = 4.064 and Emax = 0.484 cpo gives only wizard. A search
with kmax = 4.063 and Emax = 0.4841 cpo gives only miracle. Hence wizard is
the temperament class with the next lowest complexity to miracle and a smaller
optimal error. That means a rank 2 temperament has to get a fair bit more complex
than miracle to have a simpler error.

That covers temperaments which are either simpler or more accurate than mir-
acle. How about those which are close to miracle, but not quite as good? Doing
a broad search with kmax = 4.063 and Emax = 0.851 cpo gives seven results. Nar-
rowing it down to kmax = 3.75 and Emax = 0.65 cpo and only miracle comes out.
(I chose these values because the optimal dmax is 83, as for the narrowest miracle
search, so the trade-off between complexity and error is about the same.) Mira-
cle has a scalar badness6 of 2.788 × 0.484 = 1.3494. There are no temperaments

6Complexity times optimal error with error in cpo, whatever units that works out as.
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4 Examples

nearby with a badness of less than 3.75 ∗ 0.65 = 2.4735 so miracle is nearly twice
as good as anything similar. Truly outstanding!

Increase the complexity and error limits to 3.78 and 0.68 cpo and two new
temperament classes pop out. Their mappings are

|〈1, 1,−1, 3, 6| , 〈0, 3, 17,−1,−13|〉

|〈1,−5, 0,−3,−7| , 〈0, 17, 6, 15, 27|〉

The first is in Primerr as rodan. It has an STD complexity of 3.640 and an STD
error of 0.671 cpo. The other can be called an extension of semisept7. Its STD
complexity is 3.773 and its STD error is 0.614 cpo. Its generator is 12 steps from
a 31 note scale. In so far as STD error and complexity mean anything, these are
miracle’s nearest neighbors.

4.2 Ennealimmal

Standard deviations involve subtracting the squares of numbers that are very close
together. Because of this they can suffer from rounding errors. Ennealimmal8

temperament can get very close to 7-limit just intonation, so let’s check that it
comes up when it’s supposed to. The canonical mapping is

|〈9, 15, 22, 26| , 〈0,−2,−3,−2|〉

Primerr gives it an STD error of 0.030 cpo and an STD error of 4.724. Sure
enough, it comes up in a search with kmax = 4.724 and Emax = 0.03 cpo, but not
when Emax is reduced to 0.029 cpo.

So, is ennealimmal all it’s cracked up to be? Isn’t there something simpler that
does nearly as well? You can keep kmax at 4.724 and increase Emax to 0.22 cpo and
it’s still the only result you get. That makes the error seven times as large! So yes,
ennealimmal is very special indeed.

4.3 Mystery

Mystery is the name I give to a temperament class that sits at the top of some of
my searches for the odd limits of 13 and 15. It divides the octave into 29 equal
parts and the whole 15-limit is contained in the 58 note MOS. The mapping is

|〈29, 46, 68, 82, 101, 108| , 〈0, 0,−1,−1,−1,−1|〉

It’s STD error is 0.513 cpo and its STD complexity is 4.837.
Sure enough, mystery comes up in a search with Emax = 0.513 cpo and kmax =

4.837. However, so does a kind of miracle:

|〈1, 1, 3, 3, 2, 7| , 〈0, 6,−7,−2, 15,−34|〉

It has an STD complexity of 4.534 and an STD error of 0.478 cpo. So, mystery isn’t
a stand-out with STD measures.

7Name from Gene Ward Smith, collected by Herman Miller, tuning-math March 3, 2008
8Discovered and named by Gene Ward Smith
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5 General Applicability

Generally, mystery comes up better with odd-limit minimax measures than
mean-based measures. Its virtue is that none of the 15-limit intervals require
more than one generator step, and so they all fit into that 58 note MOS with
plenty of modulation by fifths. However, all the intervals that require that gen-
erator step have a relatively high complexity (not equally high with weighting).
Counting intervals like 25 : 16 that lie outside the 58 note MOS isn’t really to the
point, but this is what the STD complexity implies. In these terms mystery is still
good but not the best.

Widen the parameters to kmax = 4.9 and Emax = 0.52 cpo and another tempera-
ment class comes out:

|〈2, 4, 7, 7, 9, 11| , 〈0,−6,−17,−10,−15,−26|〉

It’s related to miracle and you can call it harry9. The generator is 4 steps of a 58
note scale (with a 29 note period). Its STD complexity is 4.889 and its STD error
is 0.354 cpo.

4.4 Over Broad Searches

Say that you’re looking for temperaments in the vicinity of miracle. So you decide
to do a search with kmax = 4 and Emax = 0.5 cpo. However, you forget the cpo bit
and instead set a dimensionless (octaves per octave) Emax = 0.5. This is a stupidly
high error and there are loads and loads of rank 2 classes that can beat it with a
complexity of within 4.

The first eleven equal temperaments that come out all have a mapping that
starts 〈1, 0,−1, . . .|. So what sense does this make? One note equal temperament?
Sometimes a valid search may require such monstrosities. If you get too many of
them it’s a sign that there are so many rank 2 temperaments of the kind you asked
for that you’ll never be able to look at them all, so you should refine your search.

I implemented these searches in Python. With some older versions this kind
of thing would hang the interpreter in a way that made it difficult to interrupt.
Fortunately that doesn’t seem to be the case any more. And, using these new
fangled generators, it’s possible to see the equal temperaments that come out
without waiting for the full set. I didn’t wait long enough to get a single rank 2
result.

Generally speaking, narrow searches are fast. All the examples in this section
take up less than half a second on my bottom of the range laptop. So the execution
time isn’t really a problem. But it may be come one if you want to do a general
search and take the best results. This method isn’t really suited for that.

5 General Applicability

Theorem 1 is fine if you want to search for temperament classes according to STD
complexity and error. But what about the more likely case that you’re interested

9Name from Gene Ward Smith via Herman Miller (Op. Cit.)
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5 General Applicability

in TOP-RMS error and scalar complexities (Primerr Sections 2 and 5.5)?

E2
RMS =

σ2
M0
σ2

M1
− σ2

M0M1

〈M2
0 〉 〈M2

1 〉 − 〈M0M1〉2
(24)

k2
scalar = 〈M2

0 〉〈M2
1 〉 − 〈M0M1〉2 (25)

To find how closely they match, consider Equation 26 on p. 8 of Primerr.

ERMS =

√
〈w2〉 − 〈w〉2

〈w2〉
(26)

The numerator here is the STD error. The denominator is the RMS of the weighted
primes, which can also be written in terms of weighted errors.√

〈w2〉 =
√

1 + 2 〈e〉+ 〈e2〉 (27)

Hence Equation 26 is the same as

ERMS =
ESTD√

1 + 2 〈e〉+ 〈e2〉
(28)

where ERMS is the TOP-RMS error, ESTD is the STD error (optimal and Tenney
weighted) and plain e is the list of errors for some stretched TOP-RMS tuning.
Alternatively,

ESTD

ERMS

=

√
1 + 2 〈e〉+ 〈e〉2 (29)

Where the errors are small, a binomial expansion of that gives

ESTD

ERMS

= 1 + 〈e〉+
1

2

〈
e2
〉

+O
(
〈e〉2

)
+O

(〈
e2
〉2) (30)

Whether the mean or RMS error dominates, the STD error is the first order ap-
proximation to the TOP-RMS error. That leads to a general rule:

Rule of Thumb 3 When searching for rank 2 temperament classes with TOP-RMS
error less than ERMS and half-range complexity less than kscalar, Theorem 1 applies if
you set

Emax = (1 + λERMS)ERMS (31)

kmax = (1 + λERMS)kscalar (32)

where λ is a confidence factor of around 1. The higher λ, the less likely you are to
miss something.

The logic is that you don’t know the sign of 〈e〉 but you know it’s about the
magnitude of the optimal error, and so the two ways of measuring the error must
agree to a factor proportional to the optimal error.

As I said in Section 5.5 of Primerr, the STD error multiplied by the STD com-
plexity is the same as the TOP-RMS error multiplied by the scalar complexity. So,
the two kinds of complexity will approximate each other to the same degree as
the two kinds of errors.

9



6 Conclusion

Another popular error measure is the TOP-max, which is the smallest value of
the magnitude of the worst Tenney-weighted error of the prime intervals (or some
other set of intervals). A natural counterpart to such an error is the half-range
complexity (Primerr Equation 72, p. 17).

k(M) = M00
max(M1)−min(M1)

2
(33)

For these, the rule is very simple.

Rule of Thumb 4 To find rank 2 temperament classes with TOP-max error below
Emax and half-range complexity below kmax, apply Theorem 1 directly. The bound on
the error of equal temperaments still refers to the STD error.

STD complexity is the standard deviation of the same thing that the half-range
complexity is half the range of. The STD is the RMS relative to the mean, and the
half-range is the worst case relative to the middle of the range. Because averages
are always smaller than worst cases, the STD complexity can’t be bigger than the
half-range complexity. So Theorem 1 still applies if you substitute one complexity
for another.

Showing that the TOP-max error is always greater than the STD error is more
difficult. The TOP-max error is the worst case for a particular scale stretch. Hence
this is only a rule of thumb and not a theorem.

6 Conclusion

Searches according to Theorem 1 and Rule of Thumb 2 are a safe and efficient
way to return all rank 2 temperament classes within given error and complex-
ity bounds, provided the bounds are strict enough that only a few temperament
classes qualify.

This is most valuable when you already know of some interesting temperament
classes, and want to find out if other classes have similar properties. If you don’t
know of any temperament classes that might be returned, it’s harder to make sure
the criteria are generous enough to return something but strict enough to return
within a reasonable amount of time.

The proof involves optimal Tenney-weighted STD errors and the corresonding
complexities, but can be extended to other cases.

A Python Code

To clarify how the algorithm for finding rank 2 temperaments is supposed to work,
here’s some source code in the Python programming language.10 As it uses the set
type, it requires at least version 2.4. The full code is in the file complete.py in the
bundle that can be downloaded from http://x31eq.com/temper/regular.zip
and also requires regular.py from the same bundle.

First, use getEqualTemperaments to get the mappings for some equal temper-
aments that represent all rank 2 temperaments with a complexity less than kmax

10See http://www.python.org
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A Python Code

Listing 1: Excerpts from complete.py

def survey (primes , kmax , Emax ) :
ets = getEqualTemperaments (primes , kmax , Emax )
return list (getLinearTemperaments (primes , ets , kmax , Emax ))

def getEqualTemperaments (primes , kmax , Emax , dmax=None ) :
i f dmax i s None :

dmax = int (math . sqrt (kmax/Emax ))
# Check we g e t a l l p e r i od d i v i s i o n s
dmax = max (dmax , largestOctaveDivision (primes , kmax ))
k2od2 = (kmax /(dmax+1))**2
for nNotes in xrange (1 , dmax+1):

cutoff = k2od2/nNotes**2 + Emax**2
for mapping in varLimitedMappings (nNotes , cutoff , primes ) :

y ie ld mapping

def getLinearTemperaments (primes , ets , kmax , Emax ) :
oldInvariants = set ()
for et in ets :

mappings = allMappings (primes , et , kmax , Emax ,
STDComplexityFinder , VarianceErrorFinder )

for gen , permap , genmap in mappings :
key = invariant (permap , genmap )
i f key not in oldInvariants :

oldInvariants . add (key )
y ie ld permap , genmap

def largestOctaveDivision (primes , kmax ) :
np = len (primes )
return int (kmax*np*max (primes ) / primes [0]/math . sqrt (np−1))

and an error less than Emax. It follows Theorem 1 and supplies a default value for
the largest equal temperament according to Rule of Thumb 2. It’s nice and small
because it uses the function varLimitedMappings to do the real work. That’s too
complicated to show here so you’ll have to download the full source code to see
it.

Once you have your equal temperaments, you use getLinearTemperaments
find the rank 2 temperaments. This depends on the function allMappings and
the two finder classes to do the work. They’re so complicated I left them in
regular.py. There’s also a function invariant that returns something to uniquely
identify the temperament class. It isn’t that complicated, but not that interesting
either, so I left it out.

The function at the top, survey, finds your rank 2 temperaments given only the
prime-limit and the complexity and error limits. It’s a simpler interface but you
never know what equal temperaments it used. It also returns a list so it’s more
convenient but it’ll hang if your requirements are too lax.

Note that errors are measured in dimensionless units, but in the text I talk about
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B Proof of Theorem 2

cpo. Divide cpo by 1200 to make them dimensionless.
There’s also largestOctaveDivision to implement Theorem 2.

B Proof of Theorem 2

For a given M00 the smallest equal tuning will have M00 notes to the octave and a
generator of zero steps. That is d = M00. For this equal temperament to be covered
by the search, dmax ≥M00. The complexity constraint tells us (via Equation 3)

M00σM1 ≤ kmax (34)

Rearranging that gives a constraint on M00 and therefore dmax

dmax ≥
kmax

σM1

(35)

If dmax satisfies this inequality, we know it’s big enough. Maybe a smaller dmax

would still work but let’s be generous.
So, the smallest safe value of dmax corresponds to the smallest possible value

of σM1. This is the standard deviation of the weighted generator mapping. It
measures how far elements of the weighted mapping get from the mean. If all
elements are zero it’s invalid because it doesn’t refer to a true rank 2 temperament.
The smallest finite value is when all elements are zero except the one with the
least weight. In terms of buoyancy,

b0
max(b)

(36)

where b is the list of buoyancies and b0 is the buoyancy of the equivalence inter-
val11. For Tenney weighting of prime limits that’s the largest prime in the limit.

max(b) = log2[p(np)] (37)

where np is the number of primes, p(i) is the ith prime number, and buoyancy is
measured in octaves. The standard deviation is

σM1 =

√
〈M2

1 〉 − 〈M1〉2 (38)

where the angled brackets represent means. In this case they’re very simple:

〈M1〉 =
b0

max(b)
(39)

〈
M2

1

〉
=

b20
max(b2)

(40)

11This is a normalization factor to ensure the choice of units cancels out. Depending on how you define the
weighted mapping for inharmonic timbres, you might not need it.
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The standard deviation follows as

σM1 =

√
b20

np max(b2)
−
(

b0
np max(b)

)2

=

√
b20

np max(b2)
− b20
n2

p max(b2)

=

√
np − 1

np

b0
max(b)

(41)

Substitute that into Equation 35 to get

dmax ≥
kmaxnp√
np − 1

max(b)

b0
(42)

We can safely round this down because both dmax and M00 are constrained to be
integers, to give Theorem 2.

C Glossary

Canonical mapping A standard form of the mapping for a rank 2 temperament.
The first element describes the primes according to the period, and the sec-
ond describes them according to the generator.

Equal temperamant A regular temperament that divides the octave into a num-
ber of equal parts and has no notes outside this division.

Generator An interval distinct from the period used to define a rank 2 tempera-
ment.

Period An interval that equally divides the octave.

RMS The root mean squared.

Rank 2 temperament A regular temperament with two distinct step sizes.

Regular temperament A tuning approximating just intonation where each just
interval maps to a single tempered interval.

Regular temperament class The set of all regular temperaments that share
the same mapping from just intonation.

STD The standard deviation. That is, the RMS relative to the mean.

STD complexity The standard deviation of the Tenney weighted generator map-
ping, multiplied by the number of periods to an octave.

STD error The standard deviation of the Tenney weighted errors of a regular
temperament. When applied to a temperament class, use the optimal value,
but keep octaves pure.

Tenney weighting Weighting intervals according to their size, with larger in-
tervals getting the less weight.

Weighted mapping The numbers indicating how many steps in a temperament
there are to each prime interval, weighted according to complexity. It should
be normalized so the octave has a weight of 1.
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