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This article follows on from Primerr.1 There, I talked about errors and complex-
ities as a function of the weighted errors or mappings of prime intervals. Here,
I talk about the error as the root mean squared (RMS) deviation of a set of in-
tervals from just intonation. For a regular temperament this RMS error is still
independent of the number of notes in the tempered scale.

A model of composite intervals is a bit less arbitrary than one that only looks
at prime intervals. In that sense the errors and complexities I talk about here are
more meaningful than those in Primerr. Where the two are in agreement, you
can view this article as validating Primerr. However, choosing a set of intervals
that doesn’t repeat every octave, and the weight to assign to each interval, still
requires a lot of arbitrary choices. From that viewpoint, everything here is still
wrong, but not as wrong as in Primerr.

I show the general formula for the weighted RMS error of a set of composite
intervals in the optimal tuning of a given temperament class, where the tuning
itself remains implicit. The formula is not much more complicated than that for
the TOP-RMS error.

The same formula also leads to a measure of the complexity of a regular tem-
perament. I don’t derive it from first principles but it’s probably something to do
with the RMS complexity of the given intervals.

I discuss the special case of equally weighted errors within a given Tenney
(product) limit and show that in all cases the formula is identical to that for the
RMS error of prime intervals with arbitrary weights.

To cover more general cases, I propose a simple model for systems that don’t
only depend on the prime weights. In the light of this I look at Farey limits, where
all intervals are taken from the lowest partials in a harmonic overtone series.

There’s a good chance that I’m re-discovering well known 19th Century math-
ematics. That may appear wasteful, but if it isn’t well known to me I’m not sure
how to find out about it. Now I’ve written it up at least it saves you from working
it out yourself.

1"Prime Based Error and Complexity Measures", Available at http://x31eq.com/primerr.pdf. I’ll call this
Primerr throughout for the sake of brevity.
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1 Measures of Composite Intervals

1.1 RMS Errors of Composite Intervals

In Primerr I gave formulas for a prime-based RMS error using an implicit weight-
ing. Here, I’ll change the notation and make the weighting explicit. The matrix M
now represents the unweighted mapping and W is a matrix containing the prime
weights where

wii =
1

bi
(1)

wij = 0, i 6= j (2)

with bi as the buoyancy for the ith prime. H is a column vector containing the
sizes of the prime intervals we’re trying to approximate. The approximation we
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1 Measures of Composite Intervals

want to solve can then be written as

WMg ' WH (3)

with g as the generators of the temperament.
The next step is to define a matrix C where each row defines a composite inter-

val according to H. That is, the intervals we want to approximate are now CH.
In these terms, the approximation becomes

WCMg ' WCH (4)

The weightings W now refer to these composite intervals, rather than the prime
intervals.

That leads to a formula for the sum-square error similar to Equation 27 on p. 8
of Primerr

E2 = (WCMg −WCH)T (WCMg −WCH) (5)

1.2 Optimal Errors

If you like, you can solve the problem for g that give the least squares optimum.
I’m more interested in going straight to the optimal error.2

Theorem 1 The optimal error Eopt of composite intervals C with weights W defined
according to prime intervals H with a mapping from primes to generators of M is
given by

E2
opt =

∣∣∣MTGM − MTGHHTGM
HTGH

∣∣∣
|MTGM |

(6)

where
G = CTW 2C (7)

To see this, start with Equation 32 on p. 9 of Primerr and put the weights in
explicitly.

E2
opt =

∣∣∣MTW 2M − MTW 2HHTW 2M
HTW 2H

∣∣∣
|MTW 2M |

(8)

Then, replace every M with CM and every H with CH.

E2
opt =

∣∣∣MTCTW 2CM − MTCTW 2CHHTCTW 2CM
HTCTW 2CH

∣∣∣
|MTCTW 2CM |

(9)

In this equation, CTW 2C keeps cropping up, so replace it with G and you get
Theorem 1.

2This is strictly speaking the optimal, normalized, weighted, RMS error. But I don’t want to say that every time
I mention it, so I’ll call it “the optimal error” instead.
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1 Measures of Composite Intervals

1.3 The Metric and Normalization

I callG a metric because it defines how to measure the size of the errors.3 It has an
interesting property in that it’s always an n× n matrix for n prime intervals. That
is, the basic problem is the same regardless of how many composite intervals you
define. This is good because the number of intervals between harmonics tends
to grow as the square of the number of harmonics you’re interested in. And the
number of harmonics can never be smaller than the number of prime intervals.

Because the metric can be smaller than the matrices that define it, there are dif-
ferent composite intervals that can give the same metric, given the right weight-
ing. It’s also likely that different problem definitions will give metrics that look
very similar. However, if the weights aren’t normalized correctly the numbers in
the metric can get arbitrarily large. To make metrics more easily comparable, I’ll
define a normalized metric, which is simply defined as the metric divided by its
top-left entry.

G′ =
G

G00

(10)

That uses my wacky notation where indexes start at zero, so G00 is the entry that
corresponds to octaves matching with octaves. With Tenney weighting of primes,
G00 is always one, and this normalization defines it to be so for arbitrary sets of
composites and weights.

Equation 6 is properly normalized in that if you multiply G by a constant the
result is unaffected. However, Equation 5 is still proportional to the sizes of the
weights. To normalize it, first write it in terms of G.

E2 = [WC(Mg −WCH)]T (WCMg −WCH)

= (Mg −H)T (WC)T (WC)(Mg −H)

= (Mg −H)TG(Mg −H) (11)

Then, divide through by the size of H in terms of the metric

E2
norm =

(Mg −H)TG(Mg −H)

HTGH
(12)

Here, Enorm is the normalized, RMS error whose optimum is given in Equation 6.
HTGH is a real number, and a constant for a given choice of composite intervals
and weights.

1.4 Scalar Complexity and Badness

The scalar complexity follows from Equation 76 on p. 18 of Primerr as

k2 =

∣∣∣∣MTGM

HTGH

∣∣∣∣ (13)

Interpreting G as a metric, that’s the volume of M normalized by the length of H.

3Properly speaking, the matrix G is something like a metric tensor rather than the metric itself. But I don’t
speak properly so I’ll call it “the metric”.
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2 Equally Weighted Tenney Limits

Scalar badness defined as error times complexity is

B2 =

∣∣∣∣MTGM

HTGH
− MTGHHTGM

HTGHHTGH

∣∣∣∣ (14)

Later on, I’ll suggest a different way of normalizing the error and, by implication,
the badness.4 But these formulas will do for now.

2 Equally Weighted Tenney Limits

The Tenney (or product) limit L can be defined (Erlich 2004) as all ratios n : d in
their simplest terms such that n×d ≤ L. Where n : d represents a musical interval
you can assume 0 < n ≤ d.5 I’ll use the shorthand TL for the set of such intervals
within the Tenney limit of L.

The idea of a Tenney limit is that an interval is more useful the simpler its ratio
is. The product of n and d is a function of the Tenney harmonic distance. (Tenney
1984)

The Tenney limit on its own isn’t usually what you want because it brings in too
many high primes. For example, to get traditional harmony you need 5:4. So you
set a Tenney limit of 20. Then, you also have intervals like 19:1, 17:1, and so on.
To correct for this, define a prime limit Pp containing the ratios that don’t contain
prime factors larger than p. Then, use the intersection of a Tenney and prime limit
notated as TL ∩ Pp.

You can happily use arbitrary weights with a Tenney limit. Today, though, lets
use equal weighting so that W = I. Then, a Tenney limit L and a prime limit P
leads to a unique metric G(TL ∩ Pp).

2.1 Pythagorean Limits

The intersections of Tenny limits with the 3-limit can all be described as Pythagorean.
Anything simpler would only have one prime interval, and so wouldn’t support a
regular temperament. The only regular temperament for a Pythagorean limit is
an equal temperament. There aren’t likely to be any new and exciting properties
of Pythagorean equal temperaments waiting to be discovered. However, taking a
detailed look at Pythagorean limits does help to illustrate the general behavior of
the metrics before we move on to more complicated examples.

The simplest Pythagorean Tenney limit is T3. It contains the intervals 1:1, 2:1

4Generally speaking, badness is a function of error and complexity that gives you an idea of how bad a
temperament or temperament class is. Today, though, I use it to mean scalar badness in particular, or error
times complexity. I’m not interested in how bad the temperaments are.

5You can also specify the Tenney limit as the geometric mean (square root of the product) of n and d or as the
logarithm of the product of n and d. For this article I use the product because it means each distinct Tenney
limit can be specified with an integer.
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2 Equally Weighted Tenney Limits

Table 1: Errors in cents for some Pythagorean equal temperaments with different Tenney
(product) limits

Mapping Pure octave RMS Optimal RMS
12 72 144 432 864 12 72 144 432 864

〈5, 8| 18.04 28.87 32.64 40.35 45.69 12.89 20.92 23.91 28.94 32.42
〈7, 11| 16.24 25.99 29.38 36.32 41.12 11.70 18.99 21.70 26.27 29.44
〈12, 19| 1.96 3.13 3.54 4.37 4.95 1.40 2.28 2.60 3.15 3.53
〈17, 27| 3.93 6.28 7.10 8.78 9.94 2.82 4.57 5.22 6.32 7.08
〈19, 30| 7.22 11.55 13.06 16.14 18.27 5.19 8.42 9.62 11.65 13.05
〈22, 35| 7.14 11.42 12.91 15.96 18.07 5.11 8.29 9.48 11.47 12.86
〈29, 46| 1.49 2.39 2.70 3.34 3.78 1.07 1.74 1.99 2.40 2.69
〈31, 49| 5.18 8.29 9.37 11.58 13.12 3.72 6.04 6.90 8.36 9.36
〈41, 65| 0.48 0.77 0.88 1.08 1.23 0.35 0.56 0.64 0.78 0.87
〈53, 84| 0.07 0.11 0.12 0.15 0.17 0.05 0.08 0.09 0.11 0.12

Table 2: Figures for some Pythagorean equal temperaments with different Tenney (product)
limits

Mapping Optimal error (cent/oct) Octave stretch (cent)
12 72 144 432 864 12 72 144 432 864

〈5, 8| 5.664 5.657 5.649 5.663 5.665 -5.52 -5.36 -5.23 -5.48 -5.60
〈7, 11| 5.142 5.135 5.126 5.141 5.144 4.97 4.82 4.70 4.93 5.04
〈12, 19| 0.617 0.616 0.615 0.617 0.617 0.60 0.58 0.57 0.59 0.61
〈17, 27| 1.237 1.236 1.234 1.237 1.238 -1.20 -1.17 -1.14 -1.19 -1.22
〈19, 30| 2.280 2.277 2.273 2.280 2.281 2.21 2.14 2.09 2.19 2.24
〈22, 35| 2.246 2.243 2.240 2.245 2.247 -2.18 -2.12 -2.07 -2.17 -2.21
〈29, 46| 0.471 0.470 0.469 0.471 0.471 -0.46 -0.44 -0.43 -0.45 -0.46
〈31, 49| 1.636 1.634 1.631 1.635 1.636 1.59 1.54 1.50 1.57 1.61
〈41, 65| 0.153 0.152 0.152 0.153 0.153 -0.15 -0.14 -0.14 -0.15 -0.15
〈53, 84| 0.022 0.021 0.021 0.022 0.022 0.02 0.02 0.02 0.02 0.02

and 3:1. With equal weighting, the metric is

G(T3) =

(
0 1 0

0 0 1

) 0 0

1 0

0 1


=

(
1 0

0 1

)
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2 Equally Weighted Tenney Limits

So far, so exciting! Next up is the 4-limit, with the new ratio 4:1.

G(T4) =

(
0 1 0 2

0 0 1 0

)
0 0

1 0

0 1

2 0


=

(
1 + 22 0

0 1

)
=

(
5 0

0 1

)
The element relating to octaves is the sum of the squares of the number of factors
of two in each ratio.

The Pythagorean 5-limit doesn’t contain any ratios that weren’t in the 4-limit.
So let’s go straight to the 6-limit. There are two new ratios with a product of 6,
being 6:1 and 3:2.

G(T6 ∩ P3) =

(
0 −1 1 0 1 2

0 1 0 1 1 0

)


0 0

−1 1

1 0

0 1

1 1

2 0


=

(
1 + 1 + 1 + 22 −1 + 1

−1 + 1 1 + 1 + 1

)
=

(
7 0

0 3

)
Again, the diagonal elements are the sums of the squares of the numbers of times
each prime occurs as a factor in each ratio. Fortunately, the off-diagonals are still
zero.

The next non-trivial limit is 8. That gives us the new ratio 8:1.

G(T8 ∩ P3) =

(
0 −1 1 0 1 2 3

0 1 0 1 1 0 0

)


0 0

−1 1

1 0

0 1

1 1

2 0

3 0


=

(
1 + 1 + 1 + 22 + 32 −1 + 1

−1 + 1 1 + 1 + 1

)
=

(
16 0

0 3

)
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2 Equally Weighted Tenney Limits

The 9-limit adds 9:1.

T9 ∩ P3 =



0 0

−1 1

1 0

0 1

0 2

1 1

2 0

3 0



G(T9 ∩ P3) =

(
1 + 1 + 1 + 22 + 32 −1 + 1

−1 + 1 1 + 1 + 22 + 1

)
=

(
16 0

0 7

)
The next distinct limit is 12. It gives us the new ratios 12:1 and 4:3

T12 ∩ P3 =



0 0

−1 1

1 0

0 1

0 2

1 1

2 −1

2 0

2 1

3 0



G(T12 ∩ P3) =

(
1× 3 + 22 × 3 + 32 −1 + 1− 2 + 2

−1 + 1− 2 + 2 1× 5 + 22

)
=

(
24 0

0 9

)
This is the first limit that gives us full-blooded harmony because it allows you to
write a 2:3:4 chord. Fortunately it can still be expressed as a prime weighting.

Maybe you’ve noticed the pattern with the distinct limits. If a new limit brings
in a new interval, it must have no prime factors other than 2 and 3. So the
next distinct limit will be 16, which brings in 16:1 and nothing else. So not very
exciting. After that there’s 18. So you get 18:1 and 9:2. Well, I suppose 9:2 is an
interval you might use, but when does 9:8 come into the picture? Right up in the
72-limit, so let’s go straight there.

G(T72 ∩ P3) =

(
181 0

0 64

)
Well, hey, the off-diagonals are still zero! Could there be a pattern here? The

answer is yes.
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2 Equally Weighted Tenney Limits

Theorem 2 For any Pythagorean subset of a Tenney limit, the off-diagonal elements
of the metric are always zero. Hence the unweighted RMS of the subset of the Tenney
limit is the same as a weighted RMS of the prime limit.

To prove this, first note that the two off-diagonal elements are always the same,
and equal to the sum of the factors of 2 multiplied by the factors of 3. From this
it’s fairly obvious that prime powers won’t contribute to those terms because they
don’t have any factors of either 2 or 3 and anything multiplied zero is zero. But
let’s call it a lemma anyway.

Lemma 1 The off-diagonal elements of the metric for a Tenney limit are independent
of intervals of the form pn:1 where p is a prime number and n is a positive integer.

Note that this is not restricted to Pythagorean limits. However many primes you
have prime powers themselves only count towards the diagonals of the metric.

That tells us that the intervals we’re interested in are all of the form |a, b〉 where
a and b are both non-zero integers. The ket notation means that the ratio is of the
form 2a:3b. This leads to a new lemma.

Lemma 2 Any interval with only two prime factors, p and q, with exponents a and b
respectively, comes in two forms within a given Tenney limit: pa:qb and paqb:1 where
p and q are chosen so that pa > qb.

This is true because pa:qb and paqb:1 will always have the same product, and so
lie within the same Tenney limits. Also, as p and q are primes, there are no other
ratios in their lowest terms involving only pa and qb.

These lemmas tell as that all the intervals that contribute to the off-diagonals
come in pairs of the form |a, b〉 and |a,−b〉 where a and b are integers. (They may
not be the same integers as above, and may not both be positive, but that doesn’t
matter.) There total contribution to the metric is therefore ab−ab which is always
zero. Hence Theorem 2

If 9:8 is useful in harmony, maybe 27:16 is as well. That leads to

G(T432 ∩ P3) =

(
664 0

0 245

)
Perhaps you’re a real devotee of Pythagorean harmony, and you want to ensure

your 81:64 is in tune as well. In that case, you need

G(T5184 ∩ P3) =

(
2524 0

0 992

)
The numbers are getting quite big, so how about the harmonically complete

limits above in a normalized, form, for more easy comparison?

G(T12 ∩ P3) =

(
1.000 0.000

0.000 0.375

)

G(T72 ∩ P3) =

(
1.000 0.000

0.000 0.354

)
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2 Equally Weighted Tenney Limits

G(T144 ∩ P3) =

(
1.000 0.000

0.000 0.338

)
G(T432 ∩ P3) =

(
1.000 0.000

0.000 0.369

)
G(T864 ∩ P3) =

(
1.000 0.000

0.000 0.385

)
G(T5184 ∩ P3) =

(
1.000 0.000

0.000 0.393

)
That list also includes T144 so that you can get 16:9 along with 9:8 and T864 so that
you can get 32:27 along with 27:16. Under octave equivalence, the pairs of metrics
would have to be merged somehow.

Those numbers are getting close to the Tenney weighting of

1

[log2(3)]2
= 0.398072 . . . (15)

You can see that Tenney weighting should be the outcome of a Tenney limit ex-
trapolated to infinity. The diagonal entries are the sums of squares of the number
of factors of a given prime in each ratio. As ratios get arbitrarily large the number
of times each prime gets used should be inversely proportional to the logarithm of
its size, and so as large ratios dominate the total should be inversely proportional
to the square of the logarithm. However, I can’t prove this.

Table 1 shows the errors for different equal temperaments. The errors on the left
hand side assume a tuning with pure octaves. On the right hand side, the tuning
is chosen to optimize the RMS error. Naturally, the optimized errors are generally
lower than those for pure octaves. Because there are only two primes involved it
doesn’t matter if you do the optimization or not when comparing temperaments
as long as you always compare pure octave temperaments with other pure octave
temperaments.

You can see that the errors get larger the higher the Tenney limit gets. This is the
trend that normalization is designed to counteract.6 You can some the normalized
errors in Table 2 and, sure enough, they’re more consistent. So consistent, in fact,
that you may wonder what the point is of specifying the Tenney limit in the first
place.

Table 2 also shows how much the octaves get stretched to give the optimal RMS
error for each Tenney limit. These figures are fairly consistent as well.

10



2 Equally Weighted Tenney Limits

Table 3: Errors and the like for some 5-prime limit equal temperaments

Product limit 20 40 80 120 240 20 40 80 120 240
Mapping Pure octave RMS (cent) Optimal RMS (cent)
〈7, 11, 16| 30.98 36.73 44.19 46.80 53.39 20.46 24.48 29.08 30.24 34.59
〈12, 19, 28| 8.53 10.22 12.53 13.03 14.99 7.90 9.38 11.22 11.90 13.56
〈15, 24, 35| 19.87 22.95 26.21 29.20 32.60 12.98 15.19 17.23 18.73 21.02
〈19, 30, 44| 8.49 9.86 11.38 12.55 14.07 5.36 6.30 7.19 7.73 8.71
〈22, 35, 51| 7.64 8.81 10.01 11.20 12.48 7.11 8.30 9.61 10.53 11.84
〈31, 49, 72| 5.20 5.96 6.69 7.58 8.40 4.39 5.10 5.84 6.44 7.21
〈34, 54, 79| 4.10 4.71 5.33 5.99 6.66 2.87 3.34 3.78 4.15 4.64
〈41, 65, 95| 3.57 4.28 5.26 5.46 6.28 3.21 3.82 4.57 4.83 5.51
〈46, 73, 107| 3.86 4.55 5.43 5.80 6.59 2.43 2.90 3.41 3.56 4.07
〈53, 84, 123| 0.86 1.03 1.27 1.31 1.51 0.71 0.84 1.01 1.06 1.21

Mapping Normalized optimum (cent/oct) Octave stretch (cent)
〈7, 11, 16| 7.60 7.72 7.88 7.66 7.74 8.71 8.69 9.08 9.12 9.18
〈12, 19, 28| 2.94 2.96 3.04 3.02 3.04 -1.20 -1.28 -1.51 -1.35 -1.43
〈15, 24, 35| 4.83 4.79 4.67 4.75 4.71 -5.56 -5.40 -5.33 -5.65 -5.55
〈19, 30, 44| 1.99 1.98 1.95 1.96 1.95 2.45 2.40 2.39 2.51 2.48
〈22, 35, 51| 2.64 2.62 2.60 2.67 2.65 -1.04 -0.93 -0.76 -0.97 -0.88
〈31, 49, 72| 1.63 1.61 1.58 1.63 1.61 1.04 0.97 0.88 1.02 0.97
〈34, 54, 79| 1.07 1.05 1.02 1.05 1.04 -1.09 -1.05 -1.02 -1.10 -1.07
〈41, 65, 95| 1.19 1.20 1.24 1.22 1.23 0.58 0.61 0.70 0.64 0.68
〈46, 73, 107| 0.90 0.91 0.92 0.90 0.91 -1.11 -1.11 -1.14 -1.16 -1.16
〈53, 84, 123| 0.26 0.27 0.27 0.27 0.27 0.18 0.19 0.21 0.20 0.20
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2 Equally Weighted Tenney Limits

2.2 5-Prime Limits

The simplest Tenney limit within the 5-prime limit is, of course, T5. That contains
intervals 1:1, 2:1, 3:1, 4:1, and 5:1. The metric for equal weighting is

G(T5) =

 0 1 0 2 0

0 0 1 0 0

0 0 0 0 1




0 0 0

1 0 0

0 1 0

2 0 0

0 0 1


=

 1 + 22 0 0

0 1 0

0 0 1


=

 5 0 0

0 1 0

0 0 1


Next is the 6-limit, with 6:1 and 3:2 added

G(T6) =

 0 −1 1 0 2 0 1

0 1 0 1 0 0 1

0 0 0 0 0 1 0




0 0 0

−1 1 0

1 0 0

0 1 0

2 0 0

0 0 1

1 1 0


=

 1× 3 + 22 1− 1 0

1− 1 1× 3 0

0 0 1


=

 7 0 0

0 3 0

0 0 1


The 8-limit only adds 8:1

T8 ∩ P5 =



0 0 0

−1 1 0

1 0 0

0 1 0

2 0 0

0 0 1

1 1 0

3 0 0



6Table 1 is supposed to show the raw RMS errors in cents. It may not include 1:1 in the average, though.
This doesn’t affect the relative errors but will change the absolute value, so be aware of this if you want to
compare you figures with mine.
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2 Equally Weighted Tenney Limits

G(T8 ∩ P5) =

 1× 3 + 22 + 32 1− 1 0

1− 1 1× 3 0

0 0 1


=

 16 0 0

0 3 0

0 0 1


The 9-limit only adds 9:1 so you can guess what happens there. The 10-limit is

a bit more interesting because we have 5:2 as well as 10:9.

G(T10 ∩ P5) =

 1× 5 + 22 + 32 1− 1 1− 1

1− 1 1× 3 + 22 0

1− 1 0 1× 3


=

 18 0 0

0 7 0

0 0 3


The 12-limit gives us 12:1 and 4:3

G(T12 ∩ P5) =

 26 0 0

0 9 0

0 0 3


To get a full 3:4:5 chord we have to go to the 20-limit

G(T20 ∩ P5) =

 52 0 0

0 19 0

0 0 7


Or the 40-limit to get 4:5:6

G(T40 ∩ P5) =

 125 0 0

0 42 0

0 0 17


To get 5-limit harmony with any other inversions or four part harmony, you need
at least the 80-limit

G(T80 ∩ P5) =

 263 0 0

0 84 0

0 0 41


For extended 5-limit harmony including major seventh chords, you need the

120-limit

G(T120 ∩ P5) =

 369 0 0

0 140 0

0 0 57


The 240-limit gives you some more inversions

G(T240 ∩ P5) =

 694 0 0

0 250 0

0 0 110


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2 Equally Weighted Tenney Limits

The numbers are getting big again, so here are some normalized metrics for the
above limits with full harmony.

G(T20 ∩ P5) =

 1.000 0.000 0.000

0.000 0.365 0.000

0.000 0.000 0.135



G(T40 ∩ P5) =

 1.000 0.000 0.000

0.000 0.336 0.000

0.000 0.000 0.136


G(T80 ∩ P5) =

 1.000 0.000 0.000

0.000 0.319 0.000

0.000 0.000 0.156


G(T120 ∩ P5) =

 1.000 0.000 0.000

0.000 0.379 0.000

0.000 0.000 0.154


G(T240 ∩ P5) =

 1.000 0.000 0.000

0.000 0.360 0.000

0.000 0.000 0.159


For comparison, the metric for Tenney weighting is

W 2 =

 1.000 0.000 0.000

0.000 0.398 0.000

0.000 0.000 0.185


The more realistic limits are close to this, but consistently give octaves more
weight.

Table 3 shows the errors for some equal temperaments. This is the equivalent
of the two Pythagorean tables. So you can compare the pure octave, optimal, and
normalized errors and see how far the octaves have to be stretched to reach the
optimum.

Unlike the Pythagorean examples, the scale stretch is important here. For ex-
ample, 22-equal is consistently better than 19-equal for pure octaves. But for
optimized octaves 19-equal is consistently better than 22-equal. The reason is
that the octaves are detuned more than twice as much in 19-equal.

Generally, the error normalization is doing its job. Although the raw errors get
consistently larger the more intervals you look at, the normalized errors agree for
a given equal temperament to about two figure accuracy.

The octave stretches look more variable. But the numbers in the table are
the cents difference between a pure and stretched octave. The difference in the
amount of optimal stretching is very small relative to the original size of the oc-
tave.

Table 4 gives the scalar complexity and badness and optimal error for each
of your favorite 5-limit rank 2 temperament classes. If you don’t recognize the
temperament from the name you can get the mapping from the pair of equal
temperaments, whose mappings are given in Table 3. Because I calculate the
badness directly, I don’t need the optimal tunings, so I don’t tell you either.
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2 Equally Weighted Tenney Limits

The first section lists scalar complexities for the different temperament classes
and different Tenney limits. The right hand column is the Tenney weighted prime
complexity, or plain “scalar complexity” as defined in Primerr. The units are what-
ever you get by measuring intervals in octaves and applying the normalization.

The first section shows scalar badness, using the units you get by measuring
intervals in octaves, normalizing, and then multiplying by twelve hundred. That’s
equivalent to complexity as above and errors in cents per octave. The right hand
column is once again the way it was calculated in Primerr. Scalar badness on its
own isn’t very exciting, but it’s one of the things you calculate to get the optimal
error, so you may as well see how it behaves.

The last section gives the optimal errors. They’re obtained by dividing the scalar
badness by the scalar complexity. The right hand column is the TOP-RMS error.
Units are in cents per octave.

After all that, Table 4 doesn’t tell you anything very interesting. In all cases the
different Tenney limit subsets agree with the Tenney-weighted prime measures to
about two significant figures.

2.3 7-Prime Limits

There are four different Tenney limits that naturally fit the 7-prime limit. They’re
all useless, but still, here are the metrics.

G(T7) =


7 0 0 0

0 3 0 0

0 0 1 0

0 0 0 1



G(T8) =


16 0 0 0

0 3 0 0

0 0 1 0

0 0 0 1



G(T9) =


16 0 0 0

0 7 0 0

0 0 1 0

0 0 0 1



G(T10) =


18 0 0 0

0 7 0 0

0 0 3 0

0 0 0 1


To play actual chords, it’s nice to have 7:6 available, which means going up to

the 42-limit

G(T42 ∩ P7) =


139 0 0 0

0 48 0 0

0 0 19 0

0 0 0 13


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2 Equally Weighted Tenney Limits

and to round up to the octave you need an 8:7 from the 56-limit

G(T56 ∩ P7) =


193 0 0 0

0 76 0 0

0 0 29 0

0 0 0 19


Now, for the 9-limit, how about 9:8?

G(T72 ∩ P7) =


267 0 0 0

0 96 0 0

0 0 37 0

0 0 0 25


Some more inversions, I hear you ask!

G(T144 ∩ P7) =


556 0 0 0

0 204 0 0

0 0 82 0

0 0 0 51


For some extended harmonies, maybe you want to go up to 21:20 for which you

need

G(T420 ∩ P7) =


1462 0 0 0

0 561 0 0

0 0 246 0

0 0 0 158


Some normalized metrics:

G(T42 ∩ P7) =


1.000 0.000 0.000 0.000

0.000 0.345 0.000 0.000

0.000 0.000 0.137 0.000

0.000 0.000 0.000 0.094



G(T56 ∩ P7) =


1.000 0.000 0.000 0.000

0.000 0.394 0.000 0.000

0.000 0.000 0.150 0.000

0.000 0.000 0.000 0.098



G(T72 ∩ P7) =


1.000 0.000 0.000 0.000

0.000 0.360 0.000 0.000

0.000 0.000 0.139 0.000

0.000 0.000 0.000 0.094



G(T144 ∩ P7) =


1.000 0.000 0.000 0.000

0.000 0.367 0.000 0.000

0.000 0.000 0.147 0.000

0.000 0.000 0.000 0.092



G(T420 ∩ P7) =


1.000 0.000 0.000 0.000

0.000 0.384 0.000 0.000

0.000 0.000 0.168 0.000

0.000 0.000 0.000 0.108


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2 Equally Weighted Tenney Limits

The metric for Tenney weighting:

G(W 2) =


1.000 0.000 0.000 0.000

0.000 0.398 0.000 0.000

0.000 0.000 0.185 0.000

0.000 0.000 0.000 0.127


Like with the 5-limit, the normalized metrics here all give more weight to oc-

taves than the Tenney weighting of primes. I don’t think that’s an artifact of all
the limits rounding off at an even number.

Tables 5 and 6 do for the 7-limit what Tables 3 and 4 did for the 5-limit They
still aren’t very interesting because the different Tenney limit subsets agree closely
with the Tenney-weighted prime measures.

Of course, you may consider this agreement to be an interesting phenomenon
given that the Tenney-limit metrics are consistently different to the Tenney-weighting.
It’s up to you.

2.4 11-Prime Limits

Let’s go straight to some chordal 11-limit metrics, shall we? To get 11:10 you need
the 110-limit

G(T110 ∩ P11) =


423 0 0 0 0

0 172 0 0 0

0 0 69 0 0

0 0 0 43 0

0 0 0 0 23


Then the limits get successively higher for 12:11, 14:11, 15:11, and 16:11.

G(T132 ∩ P11) =


560 0 0 0 0

0 196 0 0 0

0 0 82 0 0

0 0 0 49 0

0 0 0 0 31



G(T154 ∩ P11) =


616 0 0 0 0

0 228 0 0 0

0 0 104 0 0

0 0 0 65 0

0 0 0 0 35



G(T165 ∩ P11) =


668 0 0 0 0

0 264 0 0 0

0 0 110 0 0

0 0 0 65 0

0 0 0 0 39


That’s probably what you’d use to represent classic 11-limit harmony. But
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2 Equally Weighted Tenney Limits

maybe you want to push it a bit higher to 20:11.

G(T220 ∩ P11) =


896 0 0 0 0

0 346 0 0 0

0 0 142 0 0

0 0 0 89 0

0 0 0 0 49


Or even 32:11?

G(T352 ∩ P11) =


1462 0 0 0 0

0 537 0 0 0

0 0 236 0 0

0 0 0 152 0

0 0 0 0 83


Now for the normalized equivalents of those metrics.

G(T110 ∩ P11) =


1.000 0.000 0.000 0.000 0.000

0.000 0.407 0.000 0.000 0.000

0.000 0.000 0.163 0.000 0.000

0.000 0.000 0.000 0.102 0.000

0.000 0.000 0.000 0.000 0.054



G(T132 ∩ P11) =


1.000 0.000 0.000 0.000 0.000

0.000 0.350 0.000 0.000 0.000

0.000 0.000 0.146 0.000 0.000

0.000 0.000 0.000 0.087 0.000

0.000 0.000 0.000 0.000 0.055



G(T154 ∩ P11) =


1.000 0.000 0.000 0.000 0.000

0.000 0.370 0.000 0.000 0.000

0.000 0.000 0.169 0.000 0.000

0.000 0.000 0.000 0.106 0.000

0.000 0.000 0.000 0.000 0.057



G(T165 ∩ P11) =


1.000 0.000 0.000 0.000 0.000

0.000 0.395 0.000 0.000 0.000

0.000 0.000 0.165 0.000 0.000

0.000 0.000 0.000 0.097 0.000

0.000 0.000 0.000 0.000 0.058



G(T220 ∩ P11) =


1.000 0.000 0.000 0.000 0.000

0.000 0.386 0.000 0.000 0.000

0.000 0.000 0.158 0.000 0.000

0.000 0.000 0.000 0.099 0.000

0.000 0.000 0.000 0.000 0.055



G(T352 ∩ P11) =


1.000 0.000 0.000 0.000 0.000

0.000 0.367 0.000 0.000 0.000

0.000 0.000 0.161 0.000 0.000

0.000 0.000 0.000 0.104 0.000

0.000 0.000 0.000 0.000 0.057


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2 Equally Weighted Tenney Limits

Compare them with the Tenney weighting of primes.

G(W 2) =


1.000 0.000 0.000 0.000 0.000

0.000 0.398 0.000 0.000 0.000

0.000 0.000 0.185 0.000 0.000

0.000 0.000 0.000 0.127 0.000

0.000 0.000 0.000 0.000 0.084


The other metrics still tend to give more weight to the octaves, although the 110-
limit does give 3:1 a little more weight than the Tenney weighting. Also, the
other metrics deviate from each other less than they all deviate from the Tenney
weighting.

Tables 7 and 8 show the errors and so on for some 11-limit rank 1 and 2 temper-
ament classes. They’re much like the 5- and 7-limit tables in the boring agreement
of the different Tenney limits with each other and the Tenney-weighted prime
limit. The only interesting detail is that Table 7 contains two mappings for 19-
equal. So that you know which one is used for which rank 2 temperament I’ve
arbitrarily called the second on in the list 19a in Table 8. That is, 19a refers to
〈19, 30, 44, 53, 66|.

2.5 General Rules

It surely can’t have escaped your notice that all the metrics for equally weighted
Tenney limits have their only non-zero elements on the diagonal. That means
Theorem 2 can be generalized for any prime limit.

Theorem 3 For any Tenney limit, the off-diagonal elements of the metric are always
zero. Hence the unweighted RMS of the subset of the Tenney limit is the same as a
weighted RMS of the prime limit.

The proof follows from Lemma 1 and a generalization of Lemma 2.

Lemma 3 Consider an interval with at least two prime factors, p and q, with ex-
ponents a and b respectively. The interval also involves a rational factor x with no
factors of p or q. Such an interval comes in two forms within a given Tenney limit:
xpa:qb and xpaqb:1 where p and q are chosen so that xpa > qb. Factors of 1:x can be
considered separately.

This is true for exactly the same reasons Lemma 2 was true.
It doesn’t matter how many times the other primes are involved, the two off-

diagonals that involve p and q will always be zero because intervals that use them
both come in pairs that cancel out. And the same is true for all other pairs of
primes.

I also said that the normalized Pythagorean metrics tend towards Tenney weight-
ing. I believe the same is true for any limit.

Conjecture 1 The normalized metric for an unweighted Tenney limit tends towards
the metric for a Tenney weighted prime limit as the Tenney limit approaches infinity.
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3 Cross-Weighted Metrics

I still can’t prove it.
It’d be nice to come up with a proof, but it isn’t that important. You can verify

it sort of works up to any product limit you like. If something weird happens at
limits that are musically useless it doesn’t affect the validity of an observation at
lower limits. So it’s more important that, at least in the 11-limit, the metrics are
consistently different from Tenney weighting.

Rule of Thumb 1 A relatively small Tenney limit will tend to give more weight to
lower primes than the Tenney weighting of primes. What counts as “relatively small”
grows with the number of primes you consider.

Despite this, Tenney weighting to approximate a Tenney limit is still a pretty
good bet, as you’d expect from the names.

3 Cross-Weighted Metrics

3.1 Cross-Weighting

The following general class of metrics gives you a bit more flexibility than simply
weighting the prime intervals without the mess of defining all those composite
intervals.

G(λ) = W 2 − λW
2HHTW 2

HTW 2H
(16)

Here, λ is a cross-weighting term that spreads the weighting areound different
primes. It’s somewhere in the region 0 ≤ λ ≤ 1. G(0) = W 2 is the metric
for weighted prime errors. When λ gets larger, smaller intervals become more
important.

The reasons for using this metric will hopefully become apparent later on. For
now, let’s just get the theory out of the way. When the examples demand this
modification I’m going to need the language to talk about it.

To get complexity and badness in terms of this class of metric, let’s first look at
how the normalization constant comes out.

HTG(λ)H = HT

[
W 2 − λW

2HHTW 2

HTW 2H

]
H

= HTW 2H − λH
TW 2HHTW 2H

HTW 2H
= HTW 2H − λ(HTW 2H)

= (1− λ)HTW 2H (17)

The formula for complexity is then straightforward to find and not particularly
interesting.

k2 =

∣∣∣∣MTG(λ)M

HTG(λ)H

∣∣∣∣
=

∣∣∣∣∣∣
MT

(
W 2 − λW 2HHTW 2

HTW 2H

)
M

(1− λ)HTW 2H

∣∣∣∣∣∣
=

∣∣∣∣∣MTW 2M − λMTW 2HHTW 2M
HTW 2H

(1− λ)HTW 2H

∣∣∣∣∣ (18)

20



3 Cross-Weighted Metrics

There’s one more term we need for the badness.

G(λ)TH =

(
W 2 − λW

2HHTW 2

HTW 2H

)
H

= W 2H − λW
2HHTW 2H

HTW 2H
= W 2H − λ(W 2H)

= (1− λ)W 2H

G(λ)THHTG(λ) = (1− λ)W 2H
[
(1− λ)W 2H

]T
= (1− λ)2W 2HHTW 2 (19)

Combine that with Equation 17 to get

G(λ)THHTG(λ)

HTG(λ)H
=

(1− λ)2W 2HHTW 2

(1− λ)HTW 2H

= (1− λ)
W 2HHTW 2

HTW 2H
(20)

Equation 14, giving the badness we’re looking for, can be written as

B2 =

∣∣∣∣∣∣
MT

[
G(λ)− G(λ)HHTG(λ)

HTG(λ)H

]
M

HTG(λ)H

∣∣∣∣∣∣ (21)

Substituting in Equations 16 and 20 gives

G(λ)− G(λ)HHTG(λ)

HTG(λ)H

=W 2 − λW
2HHTW 2

HTW 2H
− (1− λ)

W 2HHTW 2

HTW 2H

=W 2 − (λ+ 1− λ)
W 2HHTW 2

HTW 2H

=W 2 − W 2HHTW 2

HTW 2H
(22)

At last, we have a badness formula!

B2 =

∣∣∣∣∣MTW 2M − MTW 2HHTW 2M
HTW 2H

(1− λ)HTW 2H

∣∣∣∣∣ (23)

3.2 Renormalized Badness and Complexity

Equation 23 has a strange property in that, if you write badness as a function of
λ, it’s a very simple function.

B(λ) =
B(0)

(1− λ)
r
2

(24)

Because the 1− λ term was inside the determinant, it gets raised to the power of
r, the rank of the temperament class, as well as being square rooted.
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The point of λ is that it’s a small perturbation; it shouldn’t affect the badness
this directly. So, let’s re-normalize badness so that Bren = B(0) always.

B2
ren =

∣∣∣∣(1− λ)

(
MTGM

HTGH
− MTGHHTGM

HTGHHTGH

)∣∣∣∣ (25)

=

∣∣∣∣MTW 2M

HTW 2H
− MTW 2HHTW 2M

HTW 2HHTW 2H

∣∣∣∣ (26)

The complexity also has to be renormalized to bring it into line.

k2
ren =

∣∣∣∣(1− λ)
MTG(λ)M

HTG(λ)H

∣∣∣∣ (27)

=

∣∣∣∣MTW 2M

HTW 2H
− λM

TW 2HHTW 2M

HTW 2HHTW 2H

∣∣∣∣ (28)

Note that Equation 26 is a special case of Equation 28 with λ = 1. Also, if you
take at look at Primerr, you may see that Equation 28 here is essentially the same
as Equation 82 on p. 18 of Primerr.

You can re-write Equation 27 using the identity

1− λ =
HTG(λ)H

HTW 2H
(29)

to give

k2
ren =

∣∣∣∣MTG(λ)M

HTW 2H

∣∣∣∣ (30)

3.3 Renormalized Error and Complexity

The renormalized badness in the previous section suggests thatHTW 2H is a better
normalization factor than HTGH. However, the normalizations of badness and
complexity cancel out when you calculate the error. The error is also normalized
by HTGH in Equation 12. To renormalize it in terms of HTW 2H and preserve the
badness as error times complexity, we need to adjust either complexity or badness
by a factor of 1 − λ. Because badness is already independent of λ, let’s re-define
complexity.

k2
ren =

1

1− λ

∣∣∣∣MTG(λ)M

HTW 2H

∣∣∣∣ (31)

which is the same as

k2
ren =

HTW 2H

HTG(λ)H

∣∣∣∣MTG(λ)M

HTW 2H

∣∣∣∣ (32)

The factors of HTW 2H don’t cancel out because one of them’s inside the determi-
nant.

3.4 General Renormalization

Complexity and badness as in Equation 32 and Equation 26 can be generalized
for any metric G instead of G(λ). The badness formula is

B2(G,W ) =

∣∣∣∣MTGM

HTW 2H
− λ M

TGHHTGM

HTGHHTW 2H

∣∣∣∣ (33)
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However, this means finding a suitable W 2.
So far, the best I can think of is to make the diagonals of W 2 the eigenvalues of

G. As long as the prime intervals are in ascending order, you can guess that the
diagonals of W 2 should be as well. There must be a better way but this method is
good enough for now.

It may appear that all this business of renormalization is about tweaking the
formulas to get a specific result. After all, a formula can do whatever you like
if it has enough free parameters. There is a bit of that here but notice that the
normalizations only multiply each complexity, error, or badness by a factor that
depends on H and G. If you’re comparing the complexity, error, or badness of
temperament classes with the same H and G no amount of renormalization can
bias the result.

4 Equally Weighted Farey Limits

The Farey7 f -limit contains all intervals with ratios n:d in their lowest terms where
1 ≤ d ≤ n ≤ f . In musical terms you can think of this as being all the intervals
within the first f partials of a harmonic series.

I’ll write the Farey f -limit as Ff . Like with Tenney limits, Farey limits can inter-
sect with prime limits.

4.1 Pythagorean Limits

The simplest limit with 2 and 3 is, of course, the 3-limit. As a Farey limit it contains
the intervals 1:1, 2:1, 3:2, and 3:1. Notice that, unlike the Tenney limits for such
small numbers, we already have an interval smaller than an octave. The 3-limit
metric is

G(F3) =

(
2 −1

−1 2

)
Again unlike the Tenney limit, this has non-zero off-diagonals. The 3:2 contributes
a factor of −1× 1 and has no 6:1 to balance it.

Even the strictest Pythagorean will expect an interval of 4:3. The 4-limit gives
you that, along with 4:1. The metric is

G(F4) =

(
10 −3

−3 3

)
These intervals are already sufficient for Pythagorean harmony. But let’s extend

it a bit anyway.

G(F6 ∩ P3) =

(
11 −2

−2 4

)
G(F8 ∩ P3) =

(
29 −5

−5 5

)
G(F9 ∩ P3) =

(
43 −17

−17 21

)
7As in a Farey sequence, which is a standard mathematical term. See, for example, Smith 2001.
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G(F12 ∩ P3) =

(
47 −15

−15 22

)
G(F16 ∩ P3) =

(
95 −27

−27 27

)
G(F18 ∩ P3) =

(
96 −25

−25 31

)
G(F24 ∩ P3) =

(
105 −22

−22 32

)
G(F27 ∩ P3) =

(
135 −52

−52 77

)
G(F32 ∩ P3) =

(
235 −82

−82 91

)
The off-diagonal elements clearly aren’t going away. Notice that they’re nega-

tive, which means these metrics are of the general form I talked about in the last
section. You’d almost think I planned it that way.

Here are the normalized metrics:

G(F3) =

(
1.000 −0.500

−0.500 1.000

)

G(F4) =

(
1.000 −0.300

−0.300 0.300

)
G(F6 ∩ P3) =

(
1.000 −0.182

−0.182 0.364

)
G(F8 ∩ P3) =

(
1.000 −0.172

−0.172 0.172

)
G(F9 ∩ P3) =

(
1.000 −0.395

−0.395 0.488

)
G(F12 ∩ P3) =

(
1.000 −0.319

−0.319 0.468

)
G(F16 ∩ P3) =

(
1.000 −0.284

−0.284 0.284

)
G(F18 ∩ P3) =

(
1.000 −0.260

−0.260 0.323

)
G(F24 ∩ P3) =

(
1.000 −0.210

−0.210 0.305

)
G(F27 ∩ P3) =

(
1.000 −0.385

−0.385 0.570

)
G(F32 ∩ P3) =

(
1.000 −0.349

−0.349 0.387

)
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4 Equally Weighted Farey Limits

This sequence looks like it’s tending towards some kind of stability. Maybe with
the diagonals as Tenney weighting and the off-diagonals as the negation of the 3

weighting.
I didn’t produce any tables for Pythagorean Farey limits, but I sneaked some

Pythagorean columns into Table 9. You can see that the order of the errors is still
preserved for the two different limits. However the normalization isn’t doing such
a good job of making the errors come out as nearly the same numbers.

There are also significant differences in the optimal octave stretch for the dif-
ferent Farey limits. That means if you care about optimizing for such a limit you
do need to specify exactly which limit you care about.

4.2 5-Prime Limits

The metric for the Farey 5-limit is

G(F5) =

 15 −3 −3

−3 4 −1

−3 −1 4


It gives very basic 5-limit harmony involving 3:4:5 triads. To get a 4:5:6 we obvi-
ously need a 6.

G(F6) =

 17 −1 −4

−1 6 −2

−4 −2 5


If you want other inversions it’s nice to have an 8 as well.

G(F8 ∩ P5) =

 44 −4 −7

−4 7 −2

−7 −2 6


That’s it for 5-odd limit harmony. You may like to use even numbers higher

than 8, but there’s no 5-prime Farey limit that includes them without letting in
higher odd numbers as well. But at least Farey limits do better than Tenney limits
in containing an odd limit.

Here are some more metrics for extended 5-limit harmony

G(F9 ∩ P5) =

 58 −16 −7

−16 27 −4

−7 −4 7



G(F10 ∩ P5) =

 61 −19 −4

−19 32 −7

−4 −7 10


G(F12 ∩ P5) =

 69 −15 −6

−15 34 −8

−6 −8 11


G(F16 ∩ P5) =

 163 −37 −20

−37 44 −3

−20 −3 17


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Here are the normalized metrics

G(F5) =

 1.000 −0.200 −0.200

−0.200 0.267 −0.067

−0.200 −0.067 0.267


G(F6) =

 1.000 −0.059 −0.235

−0.059 0.353 −0.118

−0.235 −0.118 0.294


G(F8 ∩ P5) =

 1.000 −0.091 −0.159

−0.091 0.159 −0.045

−0.159 −0.045 0.136


G(F9 ∩ P5) =

 1.000 −0.276 −0.121

−0.276 0.466 −0.069

−0.121 −0.069 0.121


G(F10 ∩ P5) =

 1.000 −0.311 −0.066

−0.311 0.525 −0.115

−0.066 −0.115 0.164


G(F12 ∩ P5) =

 1.000 −0.217 −0.087

−0.217 0.493 −0.116

−0.087 −0.116 0.159


G(F16 ∩ P5) =

 1.000 −0.227 −0.123

−0.227 0.270 −0.018

−0.123 −0.018 0.104


Really, those off-diagonals aren’t going away.
I’ve already talked about Table 9 in the Pythagorean section. The same com-

ments apply to the 5-limit: the normalized errors are similar but far from iden-
tical for different limits with the same mapping. The optimal stretch also differs
according to the limit but not as much as for the Pythagorean case. That’s prob-
ably because there are more intervals being averaged over so the result isn’t so
sensitive to exactly which ones get included.

Table 10 shows the scalar complexity, badness, and optimal error in the same
format as the Tenney limit tables. The different limits still give similar results but,
as with the equal temperaments, the exact figures depend on which limit you look
at.

The Tenney-weighted prime-limit measures are significantly smaller than the
different Farey limit measures. I use the best normalized formulas I have: Equa-
tion 33 for the badness and Equation 32 for the complexity. All that theory does
make a difference but it isn’t perfect.

4.3 7-Prime Limits

The Farey 7-limit metric is

G(F7) =


23 0 −4 −4

0 8 −2 −2

−4 −2 6 −1

−4 −2 −1 6


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Hey, we get a non-zero element! But it won’t last. Here’s the 8-limit:

G(F8) =


59 −3 −7 −7

−3 9 −2 −2

−7 −2 7 −1

−7 −2 −1 7


These metrics between them cover the 7-odd limit. If you want to give the factors
of 8 less weight you can average the two metrics out somehow. If you want to
allow for more even numbers, maybe you can exaggerate the differences between
them.

There are two more Farey limits that naturally fall inside the 7-prime limit.

G(F9) =


73 −15 −7 −7

−15 33 −4 −4

−7 −4 8 −1

−7 −4 −1 8



G(F10) =


77 −18 −3 −8

−18 38 −7 −4

−3 −7 12 −2

−8 −4 −2 9


They’re consistent with the 9-odd limit, along with some more 7-prime Farey limits
that I won’t give you.

Here are some metrics for further extensions of 7-limit harmony.

G(F16 ∩ P7) =


204 −38 −21 −9

−38 58 −1 −10

−21 −1 22 −5

−9 −10 −5 17



G(F21 ∩ P7) =


258 −51 −11 −25

−51 83 −9 −4

−11 −9 30 −9

−25 −4 −9 27


Here are some normalized metrics.

G(F7) =


1.000 0.000 −0.174 −0.174

0.000 0.348 −0.087 −0.087

−0.174 −0.087 0.261 −0.043

−0.174 −0.087 −0.043 0.261



G(F8) =


1.000 −0.051 −0.119 −0.119

−0.051 0.153 −0.034 −0.034

−0.119 −0.034 0.119 −0.017

−0.119 −0.034 −0.017 0.119



G(F9) =


1.000 −0.205 −0.096 −0.096

−0.205 0.452 −0.055 −0.055

−0.096 −0.055 0.110 −0.014

−0.096 −0.055 −0.014 0.110


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G(F10) =


1.000 −0.234 −0.039 −0.104

−0.234 0.494 −0.091 −0.052

−0.039 −0.091 0.156 −0.026

−0.104 −0.052 −0.026 0.117



G(F16 ∩ P7) =


1.000 −0.186 −0.103 −0.044

−0.186 0.284 −0.005 −0.049

−0.103 −0.005 0.108 −0.025

−0.044 −0.049 −0.025 0.083



G(F21 ∩ P7) =


1.000 −0.198 −0.043 −0.097

−0.198 0.322 −0.035 −0.016

−0.043 −0.035 0.116 −0.035

−0.097 −0.016 −0.035 0.105


Fortunately, the off-diagonals are looking generally smaller than the diagonals

now.
Tables 11 and 12 show all the usual numbers for different Farey limits. One

thing to note is that the introduction of factors of 9 does make a significant differ-
ence to the results, especially for the equal temperaments. It still matters for the
rank 2 temperaments—compare the badnesses of meantone, magic and orwell in
the 8- and 9-limits. In odd-limit terms this corresponds to the distinction between
the 7-limit and the 9-limit. If you want to get octave-equivalent results from an
octave-specific formula you could try averaging different metrics to get your one
true 7- or 9-limit metric.

4.4 11-Prime Limits

The Farey 11-limit gives the metric

G(F11) =


93 −17 −2 −8 −8

−17 44 −7 −4 −4

−2 −7 14 −2 −2

−8 −4 −2 10 −1

−8 −4 −2 −1 10


The 12-limit gives you a bit more harmonic freedom.

G(F12) =


109 −9 −4 −10 −10

−9 48 −8 −5 −5

−4 −8 15 −2 −2

−10 −5 −2 11 −1

−10 −5 −2 −1 11


After that, of course, factors of 13 come into the picture. So you can think

of these two metrics as defining the 11-odd limit, give or take a few generous
inversions. However, the 11-prime subset of the 14-limit is still within the 11-odd
limit.

G(F14 ∩ P11) =


114 −12 −5 −5 −11

−12 53 −8 −8 −5

−5 −8 16 −3 −2

−5 −8 −3 16 −2

−11 −5 −2 −2 12


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Some more metrics for extended 11-limit harmony

G(F15 ∩ P11) =


129 −19 −12 −4 −11

−19 60 −1 −10 −6

−12 −1 23 −5 −3

−4 −10 −5 18 −2

−11 −6 −3 −2 13



G(F16 ∩ P11) =


241 −35 −20 −8 −15

−35 66 0 −10 −6

−20 0 25 −5 −3

−8 −10 −5 19 −2

−15 −6 −3 −2 14



G(F21 ∩ P11) =


300 −46 −8 −24 −18

−46 96 −8 −3 −9

−8 −8 34 −9 −4

−24 −3 −9 30 −3

−18 −9 −4 −3 17



G(F32 ∩ P11) =


712 −127 −73 −22 −20

−127 271 −36 −15 −22

−73 −36 123 −20 −11

−22 −15 −20 49 −6

−20 −22 −11 −6 32


Because the matrices are getting very wide, I’ll use a different format for the

normalized metrics.

F11 =


1.000 −0.183 −0.022 −0.086 −0.086

−0.183 0.473 −0.075 −0.043 −0.043

−0.022 −0.075 0.151 −0.022 −0.022

−0.086 −0.043 −0.022 0.108 −0.011

−0.086 −0.043 −0.022 −0.011 0.108



F12 =


1.000 −0.083 −0.037 −0.092 −0.092

−0.083 0.440 −0.073 −0.046 −0.046

−0.037 −0.073 0.138 −0.018 −0.018

−0.092 −0.046 −0.018 0.101 −0.009

−0.092 −0.046 −0.018 −0.009 0.101



F14 :


1.000 −0.105 −0.044 −0.044 −0.096

−0.105 0.465 −0.070 −0.070 −0.044

−0.044 −0.070 0.140 −0.026 −0.018

−0.044 −0.070 −0.026 0.140 −0.018

−0.096 −0.044 −0.018 −0.018 0.105



F15 :


1.000 −0.147 −0.093 −0.031 −0.085

−0.147 0.465 −0.008 −0.078 −0.047

−0.093 −0.008 0.178 −0.039 −0.023

−0.031 −0.078 −0.039 0.140 −0.016

−0.085 −0.047 −0.023 −0.016 0.101


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F16 :


1.000 −0.145 −0.083 −0.033 −0.062

−0.145 0.274 0.000 −0.041 −0.025

−0.083 0.000 0.104 −0.021 −0.012

−0.033 −0.041 −0.021 0.079 −0.008

−0.062 −0.025 −0.012 −0.008 0.058



F21 :


1.000 −0.153 −0.027 −0.080 −0.060

−0.153 0.320 −0.027 −0.010 −0.030

−0.027 −0.027 0.113 −0.030 −0.013

−0.080 −0.010 −0.030 0.100 −0.010

−0.060 −0.030 −0.013 −0.010 0.057



F32 :


1.000 −0.178 −0.103 −0.031 −0.028

−0.178 0.381 −0.051 −0.021 −0.031

−0.103 −0.051 0.173 −0.028 −0.015

−0.031 −0.021 −0.028 0.069 −0.008

−0.028 −0.031 −0.015 −0.008 0.045


As with all the other limits, there are tables for the 11-prime Farey limits. This

time they’re numbered 13 and 14. They show the trends observed in previous
limits. The different Farey limits are getting more consistent (probably because
there are always plenty of numbers to average over) but the normalized Farey-
limit errors are significantly larger than the Tenney-weighted prime-limit errors.
That means the normalization isn’t quite getting the balance right but it still does
a much better job than anything else I can think up.

5 Conclusion

The Tenney-limit results are so close to the Tenney-weighted prime-limit results
that you may as well go with the latter. Then again, as a Tenney-limit is no harder
to implement than an arbitrary prime weighting you may as well go with what
you believe in. The Tenney limits do tend to include some uselessly large intervals
which is why they manage to give such a simple metric.

Farey limits are probably a more realistic approximation to the intervals you
might want to use. It does make a difference which limit you choose here so if
you know what limit you want it’s best to specify it. It isn’t much harder to do the
calculation for an arbitrary metric compared to prime weights.

If you don’t know exactly what limit you want you can always average out
the metrics from different limits. If you want some larger intervals than the Farey
limits give you can add some Tenney metrics to the mix. The cross-weighting term
I added to the prime weighted metrics will control how much you concentrate on
small intervals relative to a Tenney limit. So you could try playing with that if
you’d prefer to start with a Tenney limit.

Ultimately you can get whatever you want by giving exactly the weights you
want to exactly the intervals you’re interested in. Once you set up the problem it’s
easy to solve for any metric. But Tenney weighting of prime limits is still easier
to set up than the general cases so if you don’t know what you want you may as
well use that (and remember to take account of the optimal scale stretch when
you calculate the errors).
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7 Glossary

Error The deviation of an interval from just intonation. Sometimes the absolute
value, sometimes weighted.

Farey limit The Farey f -limit Ff contains all ratios n:d in their lowest terms
where 1 <= d <= n <= f .

Mapping “The mapping” of an equal temperament is a column vector containing
numbers telling you how many scale steps there are to each prime interval.
The mapping of a rank 2 temperament is a matrix where each column is the
mapping of an equal temperament.

Metric A matrix that tell you how complexity and error should be measured.

Normalization Multiplying an average by a function of the things you’re aver-
aging over, but not the thing you’re averaging, so that averages over differ-
ent things give similar results. Or multiplying by some other constant that
doesn’t affect the result.

Optimal error The normalized, optimal, RMS error over a given set of intervals.

Prime interval Intervals of minimal complexity that all the intervals you’re in-
terested in are built from. For all the examples here that means ratios of the
form p:1 where p is a prime number.

Prime limit The p-prime limit Pp contains all ratios n:d in their lowest terms
where 1 <= d <= n and n and d contain no prime factors larger than p.

Product limit The same as a Tenney limit the way I specify it today.

Regular temperament A way of simplifying just intonation so that it requires
fewer distinct intervals but loses accuracy. Each interval in just intonation
corresponds to a single tempered interval, but a tempered interval will cor-
respond to more than one just interval.

Renormalization Nothing to be frightened of! All I mean is a second stage of
normalization. Nothing to do with the same term used in quantum field
theory.
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7 Glossary

RMS Root mean squared.

Scalar complexity A way of measuring the complexity of a temperament class.
See Primerr for details. Related to the RMS of the numbers of notes you need
for the intervals under consideration.

Scalar badness Scalar complexity times optimal error.

Temperament class Different regular temperaments with the same mapping
from just to tempered intervals. Also a hazy generalization that includes
irregular temperaments.

Tenney limit The Tenney t-limit Tt contains all ratios n:d in their lowest terms
where 1 <= d <= n and nd <= t. It can be specified different ways.

Tenney weighting Giving each prime interval a weight inversely proportional
to its size in octaves or cents.

TOP-RMS Tenney-weighted Optimal Prime RMS.
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Table 4: Figures for some 5-prime limit rank 2 temperament classes (and the prime limit with
Tenney weighting)

Product limit 20 40 80 120 240 Prime
Name ETs Scalar complexity

Meantone 12&19 0.69 0.70 0.72 0.70 0.71 0.71
Srutal 12&34 1.17 1.17 1.18 1.19 1.20 1.22

Hanson 19&34 1.62 1.61 1.57 1.59 1.58 1.55
Helmholtz 12&53 1.69 1.71 1.75 1.74 1.75 1.79

Magic 19&22 1.42 1.40 1.37 1.41 1.40 1.40
Augmented 12&15 0.90 0.89 0.87 0.90 0.89 0.89

Tetracot 7&34 1.60 1.62 1.65 1.61 1.62 1.61
Sensipent 19&46 2.04 2.04 2.02 2.01 2.01 1.97

Amity 7&53 2.27 2.30 2.34 2.28 2.30 2.29
Wuerschmidt 31&34 2.32 2.29 2.24 2.31 2.28 2.29

Name ETs Scalar badness (centified)
Meantone 12&19 1.11 1.11 1.12 1.12 1.12 1.12

Srutal 12&34 1.01 1.01 1.02 1.02 1.02 1.02
Hanson 19&34 0.42 0.42 0.42 0.42 0.42 0.42

Helmholtz 12&53 0.10 0.10 0.10 0.10 0.10 0.10
Magic 19&22 1.53 1.53 1.54 1.54 1.54 1.55

Augmented 12&15 2.12 2.12 2.13 2.14 2.14 2.15
Tetracot 7&34 1.43 1.43 1.44 1.44 1.44 1.45

Sensipent 19&46 0.69 0.69 0.70 0.70 0.70 0.70
Amity 7&53 0.32 0.32 0.32 0.32 0.32 0.32

Wuerschmidt 31&34 0.59 0.59 0.59 0.60 0.60 0.60
Name ETs Optimal error (cent/oct)

Meantone 12&19 1.61 1.59 1.55 1.60 1.58 1.58
Srutal 12&34 0.86 0.87 0.86 0.85 0.85 0.84

Hanson 19&34 0.26 0.26 0.27 0.27 0.27 0.27
Helmholtz 12&53 0.06 0.06 0.06 0.06 0.06 0.06

Magic 19&22 1.07 1.09 1.12 1.09 1.10 1.11
Augmented 12&15 2.35 2.38 2.44 2.38 2.40 2.40

Tetracot 7&34 0.89 0.88 0.87 0.90 0.89 0.90
Sensipent 19&46 0.34 0.34 0.34 0.35 0.35 0.36

Amity 7&53 0.14 0.14 0.14 0.14 0.14 0.14
Wuerschmidt 31&34 0.25 0.26 0.27 0.26 0.26 0.26
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Table 5: Errors and the like for some 7-prime limit equal temperaments

Product limit 42 56 72 144 420 42 56 72 144 420
Mapping Pure octave RMS (cent) Optimal RMS (cent)

〈10, 16, 23, 28| 25.73 28.76 29.20 33.40 39.77 25.73 28.76 29.20 33.39 39.70
〈12, 19, 28, 34| 19.08 20.78 21.40 24.01 29.55 15.53 16.96 17.48 19.60 23.56
〈15, 24, 35, 42| 21.19 23.78 24.12 27.43 32.30 17.78 19.61 20.11 22.65 26.88
〈19, 30, 44, 53| 14.54 15.97 16.38 18.39 22.34 8.98 9.62 10.06 11.24 13.33
〈22, 35, 51, 62| 10.56 11.70 11.95 13.46 16.14 8.91 9.80 10.05 11.42 13.70
〈27, 43, 63, 76| 13.84 15.43 15.69 17.91 21.40 8.04 8.69 9.05 10.24 11.88
〈31, 49, 72, 87| 5.41 6.09 6.17 7.00 8.16 4.65 5.19 5.29 6.01 7.04
〈41, 65, 95, 115| 4.14 4.57 4.66 5.37 6.54 3.46 3.83 3.91 4.48 5.35
〈46, 73, 107, 129| 4.51 5.01 5.10 5.83 7.02 4.11 4.50 4.62 5.22 6.34
〈53, 84, 123, 149| 2.72 2.95 3.05 3.40 4.20 2.62 2.85 2.94 3.30 4.05

Mapping Normalized optimum (cent/oct) Octave stretch (cent)
〈10, 16, 23, 28| 8.01 8.19 8.06 8.15 8.18 0.18 0.04 0.09 0.17 0.48
〈12, 19, 28, 34| 4.83 4.83 4.83 4.79 4.85 -3.44 -3.41 -3.40 -3.38 -3.67
〈15, 24, 35, 42| 5.53 5.59 5.55 5.53 5.54 -3.58 -3.82 -3.66 -3.77 -3.68
〈19, 30, 44, 53| 2.79 2.74 2.78 2.74 2.75 3.57 3.64 3.58 3.56 3.71
〈22, 35, 51, 62| 2.77 2.79 2.77 2.79 2.82 -1.77 -1.82 -1.78 -1.74 -1.76
〈27, 43, 63, 76| 2.50 2.48 2.50 2.50 2.45 -3.50 -3.62 -3.53 -3.58 -3.66
〈31, 49, 72, 87| 1.45 1.48 1.46 1.47 1.45 0.86 0.91 0.88 0.88 0.85
〈41, 65, 95, 115| 1.08 1.09 1.08 1.09 1.10 0.71 0.71 0.70 0.72 0.77
〈46, 73, 107, 129| 1.28 1.28 1.28 1.28 1.31 -0.58 -0.63 -0.60 -0.63 -0.62
〈53, 84, 123, 149| 0.81 0.81 0.81 0.80 0.83 -0.23 -0.22 -0.22 -0.21 -0.23
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Table 6: Figures for some 7-prime limit rank 2 temperament classes (and the prime limit with
Tenney weighting)

Product limit 42 56 72 144 420 Prime
Name ETs Scalar complexity

Meantone 19&31 1.34 1.32 1.33 1.31 1.33 1.35
Magic 19&41 1.79 1.78 1.78 1.77 1.79 1.80

Orwell 22&31 2.24 2.27 2.25 2.26 2.26 2.26
Miracle 31&41 2.41 2.47 2.43 2.45 2.45 2.44

Garibaldi 12&41 2.31 2.31 2.31 2.30 2.32 2.34
Sensisept 19&27 1.99 1.95 1.98 1.97 1.93 1.89

Pajara 12&22 1.18 1.20 1.18 1.19 1.20 1.20
Myna 27&31 2.40 2.40 2.41 2.40 2.34 2.28

Augene 12&27 1.40 1.41 1.40 1.39 1.41 1.43
Catakleismic 19&53 2.85 2.80 2.83 2.80 2.83 2.87

Name ETs Scalar badness (centified)
Meantone 19&31 1.89 1.89 1.89 1.87 1.87 1.87

Magic 19&41 1.90 1.89 1.90 1.90 1.92 1.93
Orwell 22&31 1.61 1.64 1.62 1.61 1.65 1.69

Miracle 31&41 1.30 1.31 1.30 1.32 1.29 1.26
Garibaldi 12&41 1.58 1.59 1.57 1.58 1.65 1.70
Sensisept 19&27 2.50 2.45 2.48 2.46 2.48 2.50

Pajara 12&22 2.95 2.98 2.95 2.94 3.02 3.08
Myna 27&31 2.23 2.25 2.24 2.27 2.23 2.17

Augene 12&27 3.26 3.23 3.25 3.22 3.21 3.19
Catakleismic 19&53 1.38 1.35 1.37 1.35 1.37 1.38

Name ETs Optimal error (cent/oct)
Meantone 19&31 1.41 1.43 1.42 1.43 1.40 1.38

Magic 19&41 1.06 1.07 1.06 1.07 1.08 1.07
Orwell 22&31 0.72 0.72 0.72 0.71 0.73 0.75

Miracle 31&41 0.54 0.53 0.54 0.54 0.53 0.51
Garibaldi 12&41 0.68 0.69 0.68 0.69 0.71 0.73
Sensisept 19&27 1.25 1.26 1.25 1.25 1.29 1.32

Pajara 12&22 2.50 2.48 2.49 2.47 2.52 2.57
Myna 27&31 0.93 0.94 0.93 0.94 0.95 0.95

Augene 12&27 2.33 2.29 2.32 2.32 2.28 2.23
Catakleismic 19&53 0.48 0.48 0.48 0.48 0.48 0.48
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Table 7: Errors and the like for some 11-prime limit equal temperaments
Product limit 110 176 220 352 110 176 220 352

Mapping Pure octave RMS (cent) Optimal RMS (cent)
〈12, 19, 28, 34, 42| 30.65 33.57 34.12 37.42 23.10 25.03 25.63 27.70
〈14, 22, 32, 39, 48| 44.93 48.65 49.58 53.67 24.73 27.11 27.49 29.70
〈15, 24, 35, 42, 52| 25.15 26.50 27.51 29.16 20.48 21.72 22.51 24.09
〈19, 30, 44, 53, 65| 26.36 28.87 29.36 32.06 16.94 18.73 18.95 20.64
〈19, 30, 44, 53, 66| 18.31 19.68 20.23 22.00 15.73 17.20 17.52 19.15
〈22, 35, 51, 62, 76| 12.47 13.23 13.71 14.74 11.41 12.27 12.59 13.60
〈27, 43, 63, 76, 94| 20.02 21.68 22.14 23.91 10.59 11.63 11.82 12.77
〈31, 49, 72, 87, 107| 7.59 8.08 8.35 8.89 5.99 6.43 6.60 7.07
〈41, 65, 95, 115, 142| 5.30 5.79 5.86 6.39 5.03 5.50 5.57 6.06
〈46, 73, 107, 129, 159| 5.50 5.93 6.06 6.54 5.27 5.70 5.82 6.32

Mapping Normalized optimum (cent/oct) Octave stretch (cent)
〈12, 19, 28, 34, 42| 5.82 5.83 5.84 5.84 -5.06 -5.19 -5.11 -5.28
〈14, 22, 32, 39, 48| 6.23 6.32 6.26 6.26 9.53 9.48 9.47 9.50
〈15, 24, 35, 42, 52| 5.16 5.06 5.13 5.08 -3.67 -3.53 -3.59 -3.45
〈19, 30, 44, 53, 65| 4.27 4.36 4.32 4.35 5.11 5.14 5.13 5.20
〈19, 30, 44, 53, 66| 3.96 4.01 3.99 4.04 2.37 2.23 2.31 2.29
〈22, 35, 51, 62, 76| 2.88 2.86 2.87 2.87 -1.27 -1.15 -1.23 -1.20
〈27, 43, 63, 76, 94| 2.67 2.71 2.69 2.69 -4.27 -4.25 -4.25 -4.25
〈31, 49, 72, 87, 107| 1.51 1.50 1.50 1.49 1.17 1.14 1.16 1.14
〈41, 65, 95, 115, 142| 1.27 1.28 1.27 1.28 0.42 0.42 0.41 0.43
〈46, 73, 107, 129, 159| 1.33 1.33 1.33 1.33 -0.40 -0.38 -0.38 -0.36
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Table 8: Figures for some 11-prime limit rank 2 temperament classes (and the prime limit
with Tenney weighting)

Product limit 110 176 220 352 Prime
Name ETs Scalar complexity

Orwell 22&31 2.13 2.10 2.11 2.09 2.05
Meantone 12&31 1.83 1.85 1.84 1.85 1.92

Miracle 31&41 2.73 2.73 2.73 2.72 2.79
Valentine 15&31 2.41 2.36 2.39 2.36 2.31

Myna 27&31 2.62 2.64 2.64 2.63 2.61
Magic 22&41 2.22 2.23 2.23 2.24 2.35

Squares 14&31 2.27 2.30 2.28 2.28 2.20
Meanpop 19a&31 2.19 2.22 2.20 2.24 2.42

Pajara 12&22 1.57 1.57 1.57 1.56 1.61
Augene 12&15 1.45 1.43 1.44 1.43 1.45

Name ETs Scalar badness (centified)
Orwell 22&31 2.26 2.25 2.26 2.26 2.36

Meantone 12&31 2.72 2.71 2.72 2.71 2.76
Miracle 31&41 1.39 1.39 1.39 1.38 1.35

Valentine 15&31 2.38 2.36 2.37 2.36 2.39
Myna 27&31 2.30 2.31 2.30 2.29 2.22
Magic 22&41 2.71 2.73 2.71 2.73 2.88

Squares 14&31 3.37 3.39 3.37 3.34 3.19
Meanpop 19a&31 2.89 2.88 2.89 2.89 2.99

Pajara 12&22 3.59 3.58 3.59 3.61 3.71
Augene 12&15 3.86 3.86 3.88 3.86 3.84

Name ETs Optimal error (cent/oct)
Orwell 22&31 1.06 1.07 1.07 1.08 1.15

Meantone 12&31 1.49 1.46 1.48 1.46 1.44
Miracle 31&41 0.51 0.51 0.51 0.51 0.48

Valentine 15&31 0.99 1.00 0.99 1.00 1.03
Myna 27&31 0.88 0.88 0.87 0.87 0.85
Magic 22&41 1.22 1.22 1.22 1.22 1.23

Squares 14&31 1.48 1.47 1.48 1.46 1.45
Meanpop 19a&31 1.32 1.30 1.31 1.29 1.24

Pajara 12&22 2.29 2.29 2.29 2.31 2.30
Augene 12&15 2.66 2.71 2.69 2.69 2.65
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Table 9: Errors and the like for some 5-prime limit equal temperaments
Farey limit 3 4 5 6 3 4 5 6

Mapping Pure octave RMS (cent) Optimal RMS (cent)
〈7, 11, 16| 13.26 12.58 28.28 27.31 8.34 11.78 21.62 22.17
〈12, 19, 28| 1.60 1.51 9.53 9.85 1.00 1.41 7.95 9.23
〈15, 24, 35| 14.73 13.98 13.16 13.15 9.11 13.01 11.13 10.16
〈19, 30, 44| 5.89 5.59 5.95 5.81 3.69 5.23 4.81 4.36
〈22, 35, 51| 5.83 5.53 6.22 6.97 3.62 5.16 6.12 6.95
〈31, 49, 72| 4.23 4.01 3.62 4.05 2.65 3.75 3.62 3.91
〈34, 54, 79| 3.21 3.04 2.61 2.71 2.00 2.84 2.37 2.25
〈41, 65, 95| 0.40 0.37 3.98 4.07 0.25 0.35 3.28 3.78
〈46, 73, 107| 1.95 1.85 3.31 3.18 1.22 1.73 2.50 2.47
〈53, 84, 123| 0.06 0.05 0.93 0.93 0.03 0.05 0.74 0.84

Mapping Normalized optimum (cent/oct) Octave stretch (cent)
〈7, 11, 16| 6.15 6.62 10.55 10.42 9.17 3.49 13.91 11.24
〈12, 19, 28| 0.74 0.79 3.88 4.34 1.10 0.43 -3.96 -2.39
〈15, 24, 35| 6.72 7.31 5.43 4.78 -10.13 -4.02 -5.27 -5.80
〈19, 30, 44| 2.72 2.94 2.35 2.05 4.07 1.57 2.65 2.68
〈22, 35, 51| 2.67 2.89 2.99 3.27 -4.01 -1.57 0.86 -0.36
〈31, 49, 72| 1.95 2.11 1.76 1.84 2.92 1.13 0.09 0.73
〈34, 54, 79| 1.47 1.59 1.16 1.06 -2.21 -0.86 -0.83 -1.05
〈41, 65, 95| 0.18 0.20 1.60 1.78 -0.27 -0.11 1.70 1.06
〈46, 73, 107| 0.90 0.97 1.22 1.16 -1.35 -0.52 -1.64 -1.39
〈53, 84, 123| 0.03 0.03 0.36 0.39 0.04 0.01 0.42 0.29
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Table 10: Figures for some 5-prime limit rank 2 temperament classes (and the prime limit
with Tenney weighting)

Farey limit 5 6 8 10 12 15 16 Prime
Name ETs Scalar complexity

Meantone 12&19 0.96 0.99 0.97 0.77 0.78 0.83 0.85 0.71
Srutal 12&34 1.44 1.63 1.36 1.54 1.51 1.40 1.23 1.22

Hanson 19&34 1.84 1.61 1.74 2.04 1.92 1.93 2.08 1.55
Helmholtz 12&53 2.25 2.51 2.20 2.10 2.10 2.04 1.84 1.79

Magic 19&22 1.52 1.48 1.36 1.92 1.81 1.70 1.68 1.40
Augmented 12&15 0.97 0.99 0.86 1.23 1.16 1.08 1.03 0.89

Tetracot 7&34 2.18 2.11 2.20 1.78 1.77 1.93 2.09 1.61
Sensipent 19&46 2.52 2.23 2.46 2.41 2.31 2.44 2.70 1.97

Amity 7&53 3.12 3.08 3.15 2.50 2.51 2.73 2.92 2.29
Wuerschmidt 31&34 2.49 2.46 2.22 3.14 2.97 2.77 2.70 2.29

Name ETs Scalar badness (centified)
Meantone 12&19 1.66 1.64 1.50 1.67 1.60 1.60 1.55 1.12

Srutal 12&34 1.51 1.49 1.36 1.52 1.45 1.45 1.41 1.02
Hanson 19&34 0.63 0.62 0.56 0.63 0.60 0.60 0.58 0.42

Helmholtz 12&53 0.15 0.15 0.14 0.15 0.15 0.15 0.14 0.10
Magic 19&22 2.29 2.26 2.06 2.30 2.20 2.20 2.13 1.55

Augmented 12&15 3.17 3.13 2.85 3.20 3.05 3.05 2.95 2.15
Tetracot 7&34 2.14 2.11 1.92 2.15 2.05 2.05 1.99 1.45

Sensipent 19&46 1.04 1.02 0.93 1.04 0.99 1.00 0.96 0.70
Amity 7&53 0.48 0.47 0.43 0.48 0.46 0.46 0.44 0.32

Wuerschmidt 31&34 0.88 0.87 0.80 0.89 0.85 0.85 0.82 0.60
Name ETs Optimal error (cent/oct)

Meantone 12&19 1.72 1.65 1.54 2.18 2.05 1.92 1.82 1.58
Srutal 12&34 1.05 0.92 1.00 0.99 0.96 1.03 1.15 0.84

Hanson 19&34 0.34 0.38 0.32 0.31 0.31 0.31 0.28 0.27
Helmholtz 12&53 0.07 0.06 0.06 0.07 0.07 0.07 0.08 0.06

Magic 19&22 1.50 1.52 1.51 1.20 1.21 1.30 1.27 1.11
Augmented 12&15 3.27 3.18 3.30 2.60 2.62 2.83 2.86 2.40

Tetracot 7&34 0.98 1.00 0.88 1.21 1.16 1.06 0.95 0.90
Sensipent 19&46 0.41 0.46 0.38 0.43 0.43 0.41 0.36 0.36

Amity 7&53 0.15 0.15 0.14 0.19 0.18 0.17 0.15 0.14
Wuerschmidt 31&34 0.36 0.35 0.36 0.28 0.29 0.31 0.30 0.26
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Table 11: Errors and the like for some 7-prime limit equal temperaments
Farey limit 7 8 9 10 7 8 9 10

Mapping Pure octave RMS (cent) Optimal RMS (cent)
〈10, 16, 23, 28| 23.39 22.25 28.23 30.26 22.90 21.91 27.83 30.25
〈12, 19, 28, 34| 19.53 19.08 18.51 18.22 15.87 17.05 17.75 17.28
〈15, 24, 35, 42| 15.51 14.92 21.44 20.96 15.44 14.92 20.32 19.86
〈19, 30, 44, 53| 11.77 11.80 11.95 11.58 8.44 10.28 9.85 9.88
〈22, 35, 51, 62| 9.13 8.88 10.23 10.83 8.26 8.45 9.05 10.38
〈27, 43, 63, 76| 8.41 8.60 10.55 10.25 6.13 7.73 8.69 8.19
〈31, 49, 72, 87| 3.60 3.45 5.74 5.83 3.54 3.43 5.30 5.62
〈41, 65, 95, 115| 3.76 3.68 3.60 3.92 3.33 3.46 3.54 3.74
〈46, 73, 107, 129| 4.17 4.02 4.31 4.43 4.17 4.02 4.26 4.29
〈53, 84, 123, 149| 3.09 2.98 2.80 2.87 2.85 2.83 2.72 2.85

Mapping Normalized optimum (cent/oct) Octave stretch (cent)
〈10, 16, 23, 28| 9.34 8.19 9.52 10.21 3.27 2.58 -3.03 -0.25
〈12, 19, 28, 34| 6.47 6.37 6.07 5.83 -7.76 -5.67 -3.38 -3.61
〈15, 24, 35, 42| 6.30 5.58 6.95 6.70 -1.00 -0.08 -4.40 -4.19
〈19, 30, 44, 53| 3.44 3.84 3.37 3.34 5.65 3.86 4.39 3.79
〈22, 35, 51, 62| 3.37 3.16 3.09 3.50 -2.65 -1.82 -3.07 -1.93
〈27, 43, 63, 76| 2.50 2.89 2.97 2.76 -3.93 -2.50 -3.85 -3.84
〈31, 49, 72, 87| 1.44 1.28 1.81 1.90 0.48 0.21 1.42 0.96
〈41, 65, 95, 115| 1.36 1.29 1.21 1.26 1.21 0.83 0.40 0.74
〈46, 73, 107, 129| 1.70 1.50 1.46 1.45 0.02 0.14 -0.44 -0.68
〈53, 84, 123, 149| 1.16 1.06 0.93 0.96 -0.81 -0.62 -0.43 -0.22
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Table 12: Figures for some 7-prime limit rank 2 temperament classes (and the prime limit
with Tenney weighting)

Farey limit 7 8 9 10 12 14 15 16 Prime
Name ETs Scalar complexity

Meantone 19&31 1.81 1.88 1.65 1.58 1.62 1.63 1.56 1.53 1.35
Magic 19&41 2.18 2.26 2.09 2.22 2.15 2.07 1.98 2.00 1.80

Orwell 22&31 2.47 2.30 2.59 2.89 2.76 2.65 2.46 2.36 2.26
Miracle 31&41 2.75 2.39 2.90 3.10 3.04 3.00 2.74 2.50 2.44

Garibaldi 12&41 3.05 3.01 2.88 2.78 2.86 2.90 2.73 2.58 2.34
Sensisept 19&27 2.06 2.56 2.42 2.29 2.25 2.11 2.12 2.44 1.89

Pajara 12&22 1.44 1.31 1.45 1.47 1.48 1.49 1.37 1.25 1.20
Myna 27&31 2.15 2.41 2.99 2.88 2.72 2.74 2.85 3.05 2.28

Augene 12&27 1.78 1.58 1.78 1.73 1.72 1.85 1.83 1.66 1.43
Catakleismic 19&53 3.71 3.94 3.40 3.43 3.41 3.35 3.22 3.27 2.87

Name ETs Scalar badness (centified)
Meantone 19&31 2.43 2.38 2.88 2.91 2.83 2.77 2.47 2.43 1.87

Magic 19&41 2.92 2.91 2.52 2.71 2.70 2.51 2.32 2.28 1.93
Orwell 22&31 2.29 1.86 2.28 2.50 2.36 2.49 2.38 2.07 1.69

Miracle 31&41 1.44 1.47 1.81 1.79 1.73 1.66 1.69 1.72 1.26
Garibaldi 12&41 2.84 2.48 2.04 2.19 2.21 2.27 2.27 1.96 1.70
Sensisept 19&27 3.50 3.85 3.45 3.31 3.17 3.26 3.55 3.71 2.50

Pajara 12&22 4.68 4.12 4.14 4.51 4.45 4.40 3.95 3.48 3.08
Myna 27&31 2.49 2.50 3.08 3.08 2.96 2.87 2.94 2.95 2.17

Augene 12&27 4.35 4.55 4.89 4.38 4.32 4.42 4.63 4.78 3.19
Catakleismic 19&53 1.95 2.14 1.89 1.81 1.74 1.78 1.95 2.04 1.38

Name ETs Optimal error (cent/oct)
Meantone 19&31 1.34 1.27 1.74 1.84 1.74 1.69 1.58 1.58 1.38

Magic 19&41 1.34 1.29 1.21 1.22 1.26 1.21 1.17 1.14 1.07
Orwell 22&31 0.93 0.81 0.88 0.86 0.86 0.94 0.97 0.88 0.75

Miracle 31&41 0.52 0.61 0.63 0.58 0.57 0.55 0.62 0.68 0.51
Garibaldi 12&41 0.93 0.82 0.71 0.79 0.77 0.78 0.83 0.76 0.73
Sensisept 19&27 1.70 1.50 1.43 1.44 1.41 1.55 1.67 1.52 1.32

Pajara 12&22 3.25 3.13 2.85 3.06 3.00 2.95 2.88 2.77 2.57
Myna 27&31 1.16 1.04 1.03 1.07 1.09 1.05 1.03 0.97 0.95

Augene 12&27 2.44 2.89 2.74 2.53 2.52 2.39 2.53 2.88 2.23
Catakleismic 19&53 0.52 0.54 0.55 0.53 0.51 0.53 0.60 0.62 0.48
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Table 13: Errors and the like for some 11-prime limit equal temperaments

Farey limit 11 12 14 15 16 11 12 14 15 16
Mapping Pure octave RMS (cent) Optimal RMS (cent)

〈12, 19, 28, 34, 42| 27.24 27.62 27.66 26.79 26.40 23.64 25.18 24.58 24.16 24.63
〈14, 22, 32, 39, 48| 25.93 25.43 24.63 28.83 29.63 19.92 20.55 20.22 22.33 26.03
〈15, 24, 35, 42, 52| 19.26 19.07 20.00 22.10 21.94 18.40 17.99 19.66 21.02 21.32
〈19, 30, 44, 53, 65| 22.23 22.12 21.70 21.14 21.13 18.27 18.96 18.41 18.08 19.24
〈19, 30, 44, 53, 66| 15.77 15.66 16.39 16.43 16.14 15.76 15.65 16.23 16.07 15.95
〈22, 35, 51, 62, 76| 10.91 10.82 11.08 10.64 10.41 10.88 10.75 10.86 10.44 10.30
〈27, 43, 63, 76, 94| 13.39 13.13 12.85 13.73 14.06 9.92 10.11 10.44 10.57 12.23
〈31, 49, 72, 87, 107| 6.47 6.35 6.31 6.09 6.07 5.87 5.69 5.87 5.59 5.77
〈41, 65, 95, 115, 142| 4.70 4.66 4.65 4.79 4.68 4.70 4.65 4.65 4.76 4.66
〈46, 73, 107, 129, 159| 4.78 4.76 4.93 5.61 5.49 4.78 4.76 4.91 5.58 5.47

Mapping Normalized optimum (cent/oct) Octave stretch (cent)
〈12, 19, 28, 34, 42| 7.43 7.84 7.55 7.31 7.10 -8.38 -6.89 -7.46 -6.62 -5.36
〈14, 22, 32, 39, 48| 6.26 6.40 6.21 6.76 7.50 10.44 9.22 8.38 10.58 8.07
〈15, 24, 35, 42, 52| 5.79 5.60 6.04 6.36 6.14 -3.53 -3.86 -2.16 -3.92 -2.94
〈19, 30, 44, 53, 65| 5.75 5.90 5.65 5.47 5.54 7.94 7.01 6.83 6.34 4.98
〈19, 30, 44, 53, 66| 4.96 4.87 4.98 4.86 4.60 0.25 0.36 1.36 1.97 1.40
〈22, 35, 51, 62, 76| 3.42 3.35 3.33 3.16 2.97 -0.50 -0.75 -1.30 -1.17 -0.84
〈27, 43, 63, 76, 94| 3.12 3.15 3.21 3.20 3.52 -5.58 -5.10 -4.41 -5.02 -3.92
〈31, 49, 72, 87, 107| 1.85 1.77 1.80 1.69 1.66 1.70 1.72 1.38 1.40 1.07
〈41, 65, 95, 115, 142| 1.48 1.45 1.43 1.44 1.34 -0.10 -0.19 -0.02 0.32 0.23
〈46, 73, 107, 129, 159| 1.50 1.48 1.51 1.69 1.58 0.02 -0.07 0.26 -0.31 -0.20
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Table 14: Figures for some 11-prime limit rank 2 temperament classes (and the prime limit
with Tenney weighting)

Farey limit 11 12 14 15 16 18 Prime
Name ETs Scalar complexity

Orwell 22&31 2.51 2.42 2.33 2.18 2.11 2.14 2.05
Meantone 12&31 2.41 2.53 2.42 2.35 2.33 2.35 1.92

Miracle 31&41 3.32 3.21 3.24 3.08 2.89 2.88 2.79
Valentine 15&31 2.74 2.64 2.84 2.90 2.83 2.85 2.31

Myna 27&31 3.20 3.14 3.23 3.15 3.39 3.28 2.61
Magic 22&41 2.75 2.70 2.74 2.63 2.49 2.49 2.35

Squares 14&31 2.27 2.33 2.23 2.40 2.57 2.51 2.20
Meanpop 19a&31 2.77 2.73 2.85 2.77 2.57 2.54 2.42

Pajara 12&22 2.03 2.12 2.05 1.95 1.84 1.93 1.61
Augene 12&15 1.76 1.80 1.81 1.83 1.69 1.76 1.45

Name ETs Scalar badness (centified)
Orwell 22&31 3.35 3.18 3.34 2.99 2.73 2.73 2.36

Meantone 12&31 4.28 4.32 4.23 3.85 3.65 3.77 2.76
Miracle 31&41 1.82 1.69 1.65 1.76 1.80 1.75 1.35

Valentine 15&31 3.29 3.11 3.22 3.39 3.10 3.06 2.39
Myna 27&31 2.99 3.02 2.99 2.83 2.90 2.89 2.22
Magic 22&41 3.79 3.64 3.58 3.42 3.00 3.00 2.88

Squares 14&31 4.12 4.04 3.97 4.04 4.26 4.16 3.19
Meanpop 19a&31 4.38 4.10 4.15 3.79 3.63 3.60 2.99

Pajara 12&22 5.31 5.42 5.23 4.87 4.52 4.62 3.71
Augene 12&15 5.48 5.55 5.78 5.84 5.96 5.99 3.84

Name ETs Optimal error (cent/oct)
Orwell 22&31 1.33 1.31 1.43 1.37 1.30 1.28 1.15

Meantone 12&31 1.77 1.71 1.75 1.64 1.57 1.60 1.44
Miracle 31&41 0.55 0.53 0.51 0.57 0.62 0.61 0.48

Valentine 15&31 1.20 1.18 1.13 1.17 1.10 1.07 1.03
Myna 27&31 0.94 0.96 0.92 0.90 0.86 0.88 0.85
Magic 22&41 1.38 1.35 1.30 1.30 1.20 1.21 1.23

Squares 14&31 1.82 1.74 1.78 1.68 1.66 1.65 1.45
Meanpop 19a&31 1.58 1.50 1.45 1.37 1.41 1.42 1.24

Pajara 12&22 2.61 2.56 2.56 2.50 2.46 2.40 2.30
Augene 12&15 3.11 3.09 3.20 3.20 3.52 3.41 2.65
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