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The relative Tenney-Euclidean erro for an equal temperament is
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where v; is the weighted mapping of the ith prime, and 7 is the number of
primes considered. You can re-arrange that to get

n n 2
nB*(v,n) = Z viz — [Z vi] /n. (2)
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Theorem 1 The quantity nB?(v, n) always increases when n is increased by 1 and
all elements of v are real.

This is useful to know because, when you're searching for equal tempera-
ments within a given error cutoff, you know when to stop. You can show
that a subset of the mapping is already too bad and won’t get any better.

To prove the theorem, replace n withn + 1,
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(n+1)Bv,n+1) = Z 0 — [Z viJ /(1 +1). 3)
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Then, take v,41 out of the sums

n n 2
(n+1)B(v,n+1) =2, + Z 0 - [vnﬂ + Z vi] /(n+1). (4)
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ISeehttp://x31eq.com/primerr.pdf where “relative Tenney-Euclidean error” is called
“scalar badness”.
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Expand it to get
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and, with a bit of re-arrangement
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What we’re interested in is the amount by which nB?(v, n) increases when
n becomes n + 1. That is,

A(nB?) = (n+1)BX(v,n + 1) — nB(v, n) (8)

To find it, subtract Equation 2] from Equation[7]to get
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This is a quadratic equation of form y = ax? + bx + ¢ where
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To find out what kind of roots it has, look at the discriminant, b*> — 4ac:
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When the discriminant is zero, the equation has a single real rootE| That
means the function has either a global minimum or global maximum of zero.
In this case, it’s a minimum because a is positive. So, the change is always
positive and the function can only increase as you add a prime.

2 Gee, for example, Jan Gullberg, Mathematics From the Birth of Numbers, Norton 1996, p. 311.
I call “two duplicate roots” a single root. Your mileage may vary.



